A moving least squares material point method with displacement discontinuity and two-way rigid body coupling

In this paper, we introduce the Moving Least Squares Material Point Method (MLS-MPM). MLS-MPM naturally leads to the formulation of Affine Particle-In-Cell (APIC) [Jiang et al. 2015] and Polynomial Particle-In-Cell [Fu et al. 2017] in a way that is consistent with a Galerkin-style weak form discretization of the governing equations. Additionally, it enables a new stress divergence discretization that effortlessly allows all MPM simulations to run two times faster than before. We also develop a Compatible Particle-In-Cell (CPIC) algorithm on top of MLS-MPM. Utilizing a colored distance field representation and a novel compatibility condition for particles and grid nodes, our framework enables the simulation of various new phenomena that are not previously supported by MPM, including material cutting, dynamic open boundaries, and two-way coupling with rigid bodies. MLS-MPM with CPIC is easy to implement and friendly to performance optimization.

[1]  Chenfanfu Jiang,et al.  A polynomial particle-in-cell method , 2017, ACM Trans. Graph..

[2]  Ming C. Lin,et al.  Free-flowing granular materials with two-way solid coupling , 2010, SIGGRAPH 2010.

[3]  Ronald Fedkiw,et al.  Fracturing Rigid Materials , 2007, IEEE Transactions on Visualization and Computer Graphics.

[4]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, SIGGRAPH 2007.

[5]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[6]  T. Harman,et al.  Simulation of impact and fragmentation with the material point method , 2012, 1201.2452.

[7]  Chenfanfu Jiang,et al.  Augmented MPM for phase-change and varied materials , 2014, ACM Trans. Graph..

[8]  Florence Bertails-Descoubes,et al.  A semi-implicit material point method for the continuum simulation of granular materials , 2016, ACM Trans. Graph..

[9]  Leonidas J. Guibas,et al.  Meshless animation of fracturing solids , 2005, ACM Trans. Graph..

[10]  Chen Li,et al.  A Terradynamics of Legged Locomotion on Granular Media , 2013, Science.

[11]  Ronald Fedkiw,et al.  Two-way coupling of rigid and deformable bodies , 2008, SCA '08.

[12]  Greg Turk,et al.  Rigid fluid: animating the interplay between rigid bodies and fluid , 2004, ACM Trans. Graph..

[13]  Kei Iwasaki,et al.  Deformation of 2D flow fields using stream functions , 2014, SIGGRAPH ASIA Technical Briefs.

[14]  Markus H. Gross,et al.  Deforming meshes that split and merge , 2009, ACM Trans. Graph..

[15]  James F. O'Brien,et al.  Adaptive tearing and cracking of thin sheets , 2014, ACM Trans. Graph..

[16]  Ken Museth,et al.  Animation of crack propagation by means of an extended multi-body solver for the material point method , 2017, Comput. Graph..

[17]  Tomoyuki Nishita,et al.  Local optimization of distortions in wide-angle images using moving least-squares , 2011, SCC.

[18]  Marc Alexa,et al.  Point based animation of elastic, plastic and melting objects , 2004, SCA '04.

[19]  Matthias Müller,et al.  Position based dynamics , 2007, J. Vis. Commun. Image Represent..

[20]  Tae-Yong Kim,et al.  Unified particle physics for real-time applications , 2014, ACM Trans. Graph..

[21]  Christopher Wojtan,et al.  Fast approximations for boundary element based brittle fracture simulation , 2016, ACM Trans. Graph..

[22]  T. Belytschko,et al.  DYNAMIC FRACTURE USING ELEMENT-FREE GALERKIN METHODS , 1996 .

[23]  James F. O'Brien,et al.  Simultaneous coupling of fluids and deformable bodies , 2006, SCA '06.

[24]  Miles Macklin,et al.  Position based fluids , 2013, ACM Trans. Graph..

[25]  Ming C. Lin,et al.  Free-flowing granular materials with two-way solid coupling , 2010, ACM Trans. Graph..

[26]  James F. O'Brien,et al.  Animating gases with hybrid meshes , 2005, ACM Trans. Graph..

[27]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[28]  Huamin Wang,et al.  Physics-inspired adaptive fracture refinement , 2014, ACM Trans. Graph..

[29]  Chenfanfu Jiang,et al.  The material point method for simulating continuum materials , 2016, SIGGRAPH Courses.

[30]  G. Fasshauer Meshfree Methods , 2004 .

[31]  Ronald Fedkiw,et al.  Arbitrary cutting of deformable tetrahedralized objects , 2007, SCA '07.

[32]  Chenfanfu Jiang,et al.  An angular momentum conserving affine-particle-in-cell method , 2016, J. Comput. Phys..

[33]  Demetri Terzopoulos,et al.  Modeling inelastic deformation: viscolelasticity, plasticity, fracture , 1988, SIGGRAPH.

[34]  M. Berzins,et al.  Analysis and reduction of quadrature errors in the material point method (MPM) , 2008 .

[35]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[36]  John A. Nairn,et al.  Material Point Method Calculations with Explicit Cracks , 2003 .

[37]  D. Cohen-Or,et al.  Robust moving least-squares fitting with sharp features , 2005, ACM Trans. Graph..

[38]  Mathieu Desbrun,et al.  Power particles , 2015, ACM Trans. Graph..

[39]  S. Gortler,et al.  3D Deformation Using Moving Least Squares , 2007 .

[40]  Eitan Grinspun,et al.  Continuum Foam , 2015, ACM Trans. Graph..

[41]  Andre Pradhana,et al.  Drucker-prager elastoplasticity for sand animation , 2016, ACM Trans. Graph..

[42]  Eftychios Sifakis,et al.  An adaptive generalized interpolation material point method for simulating elastoplastic materials , 2017, ACM Trans. Graph..

[43]  Chenfanfu Jiang,et al.  A level set method for ductile fracture , 2013, SCA '13.

[44]  Christopher Wojtan,et al.  High-resolution brittle fracture simulation with boundary elements , 2015, ACM Trans. Graph..

[45]  M. Gross,et al.  Unified simulation of elastic rods, shells, and solids , 2010, ACM Trans. Graph..

[46]  D. Sulsky Erratum: Application of a particle-in-cell method to solid mechanics , 1995 .

[47]  Jessica K. Hodgins,et al.  Graphical modeling and animation of ductile fracture , 2002, SIGGRAPH.

[48]  James F. O'Brien,et al.  Fluid animation with dynamic meshes , 2006, ACM Trans. Graph..

[49]  Markus H. Gross,et al.  Particle-based fluid simulation for interactive applications , 2003, SCA '03.

[50]  Ronald Fedkiw,et al.  Two-way coupling of fluids to rigid and deformable solids and shells , 2008, ACM Trans. Graph..

[51]  Ronald Fedkiw,et al.  A virtual node algorithm for changing mesh topology during simulation , 2004, ACM Trans. Graph..

[52]  Robert Bridson,et al.  Animating sand as a fluid , 2005, ACM Trans. Graph..

[53]  Ronald Fedkiw,et al.  Multiple interacting liquids , 2006, ACM Trans. Graph..

[54]  Ronald Fedkiw,et al.  Coupling water and smoke to thin deformable and rigid shells , 2005, SIGGRAPH '05.

[55]  Chenfanfu Jiang,et al.  The affine particle-in-cell method , 2015, ACM Trans. Graph..

[56]  Matthias Teschner,et al.  Direct Forcing for Lagrangian Rigid-Fluid Coupling , 2009, IEEE Transactions on Visualization and Computer Graphics.

[57]  Ronald Fedkiw,et al.  Accurate Tangential Velocities For Solid Fluid Coupling , 2009 .

[58]  Omar Zarifi,et al.  A positive-definite cut-cell method for strong two-way coupling between fluids and deformable bodies , 2017, Symposium on Computer Animation.

[59]  Craig Schroeder,et al.  Optimization Integrator for Large Time Steps , 2014, IEEE Transactions on Visualization and Computer Graphics.

[60]  Markus H. Gross,et al.  Interactive Virtual Materials , 2004, Graphics Interface.

[61]  Hongyi Xu,et al.  Signed distance fields for polygon soup meshes , 2014, Graphics Interface.

[62]  J. Brackbill,et al.  FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions , 1986 .

[63]  D. Levin,et al.  Mesh-Independent Surface Interpolation , 2004 .

[64]  Manuel Menezes de Oliveira Neto,et al.  Preserving geometry and topology for fluid flows with thin obstacles and narrow gaps , 2016, ACM Trans. Graph..

[65]  Jan Bender,et al.  Robust eXtended finite elements for complex cutting of deformables , 2017, ACM Trans. Graph..

[66]  Robert Bridson,et al.  A fast variational framework for accurate solid-fluid coupling , 2007, ACM Trans. Graph..

[67]  Jessica K. Hodgins,et al.  Graphical modeling and animation of brittle fracture , 1999, SIGGRAPH.

[68]  Matthias Teschner,et al.  Versatile rigid-fluid coupling for incompressible SPH , 2012, ACM Trans. Graph..

[69]  Ken Museth,et al.  VDB: High-resolution sparse volumes with dynamic topology , 2013, TOGS.

[70]  Alexey Stomakhin,et al.  A material point method for snow simulation , 2013, ACM Trans. Graph..

[71]  C. C. Long,et al.  Modeling strong discontinuities in the material point method using a single velocity field , 2019, Computer Methods in Applied Mechanics and Engineering.

[72]  Chenfanfu Jiang,et al.  A material point method for viscoelastic fluids, foams and sponges , 2015, Symposium on Computer Animation.

[73]  Ronald Fedkiw,et al.  Invertible finite elements for robust simulation of large deformation , 2004, SCA '04.

[74]  Scott Schaefer,et al.  Image deformation using moving least squares , 2006, ACM Trans. Graph..

[75]  FangYu,et al.  A moving least squares material point method with displacement discontinuity and two-way rigid body coupling , 2018 .

[76]  Matthias Teschner,et al.  Moving Least Squares Boundaries for SPH Fluids , 2017, VRIPHYS.

[77]  Chenfanfu Jiang,et al.  An adaptive virtual node algorithm with robust mesh cutting , 2014, SCA '14.

[78]  Chenfanfu Jiang,et al.  Multi-species simulation of porous sand and water mixtures , 2017, ACM Trans. Graph..

[79]  David Levin,et al.  The approximation power of moving least-squares , 1998, Math. Comput..

[80]  Yuanming Hu Taichi: An Open-Source Computer Graphics Library , 2018, ArXiv.

[81]  Chenfanfu Jiang,et al.  Anisotropic elastoplasticity for cloth, knit and hair frictional contact , 2017, ACM Trans. Graph..

[82]  Jun Wu,et al.  A Survey of Physically Based Simulation of Cuts in Deformable Bodies , 2015, Comput. Graph. Forum.

[83]  WuJun,et al.  A Survey of Physically Based Simulation of Cuts in Deformable Bodies , 2015 .

[84]  Doug L. James,et al.  Eigenmode compression for modal sound models , 2014, ACM Trans. Graph..

[85]  Markus H. Gross,et al.  Eurographics/ Acm Siggraph Symposium on Computer Animation (2008) Flexible Simulation of Deformable Models Using Discontinuous Galerkin Fem , 2022 .

[86]  Jan Bender,et al.  Density maps for improved SPH boundary handling , 2017, Symposium on Computer Animation.

[87]  T. Belytschko,et al.  A new implementation of the element free Galerkin method , 1994 .

[88]  Eftychios Sifakis,et al.  SPGrid: a sparse paged grid structure applied to adaptive smoke simulation , 2014, ACM Trans. Graph..

[89]  Eftychios Sifakis,et al.  Non-manifold level sets , 2015, ACM Trans. Graph..