An LMI characterization of the class of stabilizing controllers for periodic discrete-time systems
暂无分享,去创建一个
[1] P. Peres,et al. On a convex parameter space method for linear control design of uncertain systems , 1991 .
[2] S. Bittanti,et al. The difference periodic Ricati equation for the periodic prediction problem , 1988 .
[3] Dennis S. Bernstein,et al. Optimal periodic control: The π test revisited , 1980 .
[4] Paolo Bolzern,et al. The periodic Lyapunov equation , 1988 .
[5] Stephen P. Boyd,et al. Linear Matrix Inequalities in Systems and Control Theory , 1994 .
[6] S. Bittanti,et al. Analysis of discrete-time linear periodic systems , 1996 .
[7] Ana M. Urbano,et al. Pole-placement problem for discrete-time linear periodic systems , 1989 .
[8] Marco Lovera,et al. Periodic control of helicopter rotors for attenuation of vibrations in forward flight , 2000, IEEE Trans. Control. Syst. Technol..
[9] A. Laub,et al. Numerical solution of the discrete-time periodic Riccati equation , 1994, IEEE Trans. Autom. Control..
[10] G. Nicolao,et al. Covariance bounds for discrete-time linear systems with time-varying parameter uncertainty , 1994 .
[11] C. Scherer,et al. Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..
[12] O. Grasselli,et al. Robust tracking and regulation of linear periodic discrete-time systems , 1991 .
[13] Cishen Zhang,et al. Performance Analysis of Periodically Time Varying Controllers , 1996 .
[14] Fritz Colonius. Optimal Periodic Control , 1988 .
[15] C. E. de Souza,et al. Periodic strong solution for the optimal filtering problem of linear discrete-time periodic systems , 1991 .
[16] A. Varga. Periodic Lyapunov equations: Some applications and new algorithms , 1997 .