A quantization proof of the uniform Yau-Tian-Donaldson conjecture

Using quantization techniques, we show that the $\delta$-invariant of Fujita-Odaka coincides with the optimal exponent in certain Moser-Trudinger type inequality. Consequently we obtain a uniform Yau-Tian-Donaldson theorem for the existence of twisted K\"ahler-Einstein metrics with arbitrary polarizations. Our approach mainly uses pluripotential theory, which does not involve Cheeger-Colding-Tian theory or the non-Archimedean language. A new computable criterion for the existence of constant scalar curvature K\"ahler metrics is also given.

[1]  Zakarias Sjostrom Dyrefelt Optimal lower bounds for Donaldson's J-functional , 2020 .

[2]  Xiuxiong Chen The Space of Kähler Metrics , 2000 .

[3]  Chi Li,et al.  Quasi-projectivity of the moduli space of smooth Kahler-Einstein Fano manifolds , 2015, 1502.06532.

[4]  G. Tian,et al.  On the Yau‐Tian‐Donaldson Conjecture for Singular Fano Varieties , 2017, Communications on Pure and Applied Mathematics.

[5]  Zakarias Sjostrom Dyrefelt Existence of cscK metrics on smooth minimal models , 2020, 2004.02832.

[6]  T. Mabuchi Some symplectic geometry on compact Kähler manifolds. I , 1987 .

[7]  B. Berndtsson Probability measures related to geodesics in the space of K , 2009 .

[8]  T. Darvas,et al.  The Mabuchi Geometry of Finite Energy Classes , 2014, 1409.2072.

[9]  R. Berman,et al.  Complex optimal transport and the pluripotential theory of K\"ahler-Ricci solitons , 2014, 1401.8264.

[10]  Xiuxiong Chen,et al.  On the constant scalar curvature K\"ahler metrics, existence results , 2018, 1801.00656.

[11]  G. Tian,et al.  On the existence of conic Kähler-Einstein metrics , 2019, Advances in Mathematics.

[12]  Chi Li Geodesic rays and stability in the cscK problem , 2020, 2001.01366.

[13]  G. Tian,et al.  The Uniform Version of Yau–Tian–Donaldson Conjecture for Singular Fano Varieties , 2019, Peking Mathematical Journal.

[14]  Wei Ding Remarks on the existence problem of positive Kähler-Einstein metrics , 1988 .

[15]  R. Berman,et al.  A variational approach to complex Monge-Ampère equations , 2009, 0907.4490.

[16]  Gábor Székelyhidi,et al.  Kähler–Einstein metrics along the smooth continuity method , 2015, 1506.07495.

[17]  R. Dervan,et al.  Valuative stability of polarised varieties , 2020, Mathematische Annalen.

[18]  Valentino Tosatti,et al.  On the Regularity of Geodesics in the Space of Kähler Metrics , 2016, 1611.02390.

[19]  G. Tian On Kähler-Einstein metrics on certain Kähler manifolds withC1 (M)>0 , 1987 .

[20]  P. Eyssidieux,et al.  Monge–Ampère equations in big cohomology classes , 2008 .

[21]  Valentino Tosatti,et al.  On the C1,1 Regularity of Geodesics in the Space of Kähler Metrics , 2017 .

[22]  Song Sun,et al.  Existence and deformations of Kähler-Einstein metrics on smoothable Q-Fano varieties , 2020 .

[23]  E. Calabi,et al.  The Space of K\"ahler metrics (II) , 2001, math/0108162.

[24]  J. Demailly Regularization of closed positive currents and Intersection Theory , 2007 .

[25]  B. Berndtsson,et al.  Convexity of the K-energy on the space of Kahler metrics and uniqueness of extremal metrics , 2014, 1405.0401.

[26]  Yalong Shi On the α-invariants of cubic surfaces with Eckardt points , 2010 .

[27]  G. Tian Kähler-Einstein metrics with positive scalar curvature , 1997 .

[28]  G. Tian Kähler–Einstein metrics on Fano manifolds , 2013 .

[29]  R. Berman,et al.  An arithmetic Hilbert–Samuel theorem for singular hermitian line bundles and cusp forms , 2012, Compositio Mathematica.

[30]  Kento Fujita A valuative criterion for uniform K-stability of ℚ-Fano varieties , 2019, Journal für die reine und angewandte Mathematik (Crelles Journal).

[31]  G. Tian K‐Stability and Kähler‐Einstein Metrics , 2012, 1211.4669.

[32]  G. Tian On a set of polarized Kähler metrics on algebraic manifolds , 1990 .

[33]  S. Donaldson,et al.  Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2 , 2012, 1212.4714.

[34]  R. Berman K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics , 2012, 1205.6214.

[35]  M. Jonsson,et al.  A non-Archimedean approach to K-stability , 2018, 1805.11160.

[36]  Chi Li K-semistability is equivariant volume minimization , 2015, 1512.07205.

[37]  Chi Li On equivariantly uniform stability and Yau-Tian-Donaldson conjecture for singular Fano varieties , 2019 .

[38]  Y. Odaka,et al.  On the K-stability of Fano varieties and anticanonical divisors , 2016, Tohoku Mathematical Journal.

[39]  Semi-continuity of complex singularity exponents and K\ , 1999, math/9910118.

[40]  S. Donaldson Scalar Curvature and Stability of Toric Varieties , 2002 .

[41]  Y. Rubinstein,et al.  Quantization in Geometric Pluripotential Theory , 2018, Communications on Pure and Applied Mathematics.

[42]  Catherine K. A. Cannizzo,et al.  Kähler-Einstein Metrics on Fano Manifolds , 2018 .

[43]  On the proper moduli spaces of smoothable Kähler–Einstein Fano varieties , 2014, Duke Mathematical Journal.

[44]  S. Kołodziej,et al.  On regularization of plurisubharmonic functions on manifolds , 2007 .

[45]  S. Donaldson,et al.  Kahler-Einstein metrics on Fano manifolds, I: approximation of metrics with cone singularities , 2012, 1211.4566.

[46]  S. Donaldson Scalar Curvature and Projective Embeddings, I , 2001 .

[47]  Chi Li G-uniform stability and Kähler-Einstein metrics on Fano varieties , 2019 .

[48]  M. Jonsson,et al.  A variational approach to the Yau–Tian–Donaldson conjecture , 2015, Journal of the American Mathematical Society.

[49]  Kewei Zhang,et al.  Basis divisors and balanced metrics , 2020, Journal für die reine und angewandte Mathematik.

[50]  P. Eyssidieux,et al.  Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties , 2011, Journal für die reine und angewandte Mathematik (Crelles Journal).

[51]  S. Donaldson,et al.  Kahler-Einstein metrics on Fano manifolds, III: limits as cone angle approaches 2\pi\ and completion of the main proof , 2013, 1302.0282.

[52]  Y. Hashimoto Mapping properties of the Hilbert and Fubini–Study maps in Kähler geometry , 2017, 1705.11025.

[53]  M. Jonsson,et al.  Thresholds, valuations, and K-stability , 2017, Advances in Mathematics.