A quantization proof of the uniform Yau-Tian-Donaldson conjecture
暂无分享,去创建一个
[1] Zakarias Sjostrom Dyrefelt. Optimal lower bounds for Donaldson's J-functional , 2020 .
[2] Xiuxiong Chen. The Space of Kähler Metrics , 2000 .
[3] Chi Li,et al. Quasi-projectivity of the moduli space of smooth Kahler-Einstein Fano manifolds , 2015, 1502.06532.
[4] G. Tian,et al. On the Yau‐Tian‐Donaldson Conjecture for Singular Fano Varieties , 2017, Communications on Pure and Applied Mathematics.
[5] Zakarias Sjostrom Dyrefelt. Existence of cscK metrics on smooth minimal models , 2020, 2004.02832.
[6] T. Mabuchi. Some symplectic geometry on compact Kähler manifolds. I , 1987 .
[7] B. Berndtsson. Probability measures related to geodesics in the space of K , 2009 .
[8] T. Darvas,et al. The Mabuchi Geometry of Finite Energy Classes , 2014, 1409.2072.
[9] R. Berman,et al. Complex optimal transport and the pluripotential theory of K\"ahler-Ricci solitons , 2014, 1401.8264.
[10] Xiuxiong Chen,et al. On the constant scalar curvature K\"ahler metrics, existence results , 2018, 1801.00656.
[11] G. Tian,et al. On the existence of conic Kähler-Einstein metrics , 2019, Advances in Mathematics.
[12] Chi Li. Geodesic rays and stability in the cscK problem , 2020, 2001.01366.
[13] G. Tian,et al. The Uniform Version of Yau–Tian–Donaldson Conjecture for Singular Fano Varieties , 2019, Peking Mathematical Journal.
[14] Wei Ding. Remarks on the existence problem of positive Kähler-Einstein metrics , 1988 .
[15] R. Berman,et al. A variational approach to complex Monge-Ampère equations , 2009, 0907.4490.
[16] Gábor Székelyhidi,et al. Kähler–Einstein metrics along the smooth continuity method , 2015, 1506.07495.
[17] R. Dervan,et al. Valuative stability of polarised varieties , 2020, Mathematische Annalen.
[18] Valentino Tosatti,et al. On the Regularity of Geodesics in the Space of Kähler Metrics , 2016, 1611.02390.
[19] G. Tian. On Kähler-Einstein metrics on certain Kähler manifolds withC1 (M)>0 , 1987 .
[20] P. Eyssidieux,et al. Monge–Ampère equations in big cohomology classes , 2008 .
[21] Valentino Tosatti,et al. On the C1,1 Regularity of Geodesics in the Space of Kähler Metrics , 2017 .
[22] Song Sun,et al. Existence and deformations of Kähler-Einstein metrics on smoothable Q-Fano varieties , 2020 .
[23] E. Calabi,et al. The Space of K\"ahler metrics (II) , 2001, math/0108162.
[24] J. Demailly. Regularization of closed positive currents and Intersection Theory , 2007 .
[25] B. Berndtsson,et al. Convexity of the K-energy on the space of Kahler metrics and uniqueness of extremal metrics , 2014, 1405.0401.
[26] Yalong Shi. On the α-invariants of cubic surfaces with Eckardt points , 2010 .
[27] G. Tian. Kähler-Einstein metrics with positive scalar curvature , 1997 .
[28] G. Tian. Kähler–Einstein metrics on Fano manifolds , 2013 .
[29] R. Berman,et al. An arithmetic Hilbert–Samuel theorem for singular hermitian line bundles and cusp forms , 2012, Compositio Mathematica.
[30] Kento Fujita. A valuative criterion for uniform K-stability of ℚ-Fano varieties , 2019, Journal für die reine und angewandte Mathematik (Crelles Journal).
[31] G. Tian. K‐Stability and Kähler‐Einstein Metrics , 2012, 1211.4669.
[32] G. Tian. On a set of polarized Kähler metrics on algebraic manifolds , 1990 .
[33] S. Donaldson,et al. Kähler-Einstein metrics on Fano manifolds. II: Limits with cone angle less than 2 , 2012, 1212.4714.
[34] R. Berman. K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics , 2012, 1205.6214.
[35] M. Jonsson,et al. A non-Archimedean approach to K-stability , 2018, 1805.11160.
[36] Chi Li. K-semistability is equivariant volume minimization , 2015, 1512.07205.
[37] Chi Li. On equivariantly uniform stability and Yau-Tian-Donaldson conjecture for singular Fano varieties , 2019 .
[38] Y. Odaka,et al. On the K-stability of Fano varieties and anticanonical divisors , 2016, Tohoku Mathematical Journal.
[39] Semi-continuity of complex singularity exponents and K\ , 1999, math/9910118.
[40] S. Donaldson. Scalar Curvature and Stability of Toric Varieties , 2002 .
[41] Y. Rubinstein,et al. Quantization in Geometric Pluripotential Theory , 2018, Communications on Pure and Applied Mathematics.
[42] Catherine K. A. Cannizzo,et al. Kähler-Einstein Metrics on Fano Manifolds , 2018 .
[43] On the proper moduli spaces of smoothable Kähler–Einstein Fano varieties , 2014, Duke Mathematical Journal.
[44] S. Kołodziej,et al. On regularization of plurisubharmonic functions on manifolds , 2007 .
[45] S. Donaldson,et al. Kahler-Einstein metrics on Fano manifolds, I: approximation of metrics with cone singularities , 2012, 1211.4566.
[46] S. Donaldson. Scalar Curvature and Projective Embeddings, I , 2001 .
[47] Chi Li. G-uniform stability and Kähler-Einstein metrics on Fano varieties , 2019 .
[48] M. Jonsson,et al. A variational approach to the Yau–Tian–Donaldson conjecture , 2015, Journal of the American Mathematical Society.
[49] Kewei Zhang,et al. Basis divisors and balanced metrics , 2020, Journal für die reine und angewandte Mathematik.
[50] P. Eyssidieux,et al. Kähler–Einstein metrics and the Kähler–Ricci flow on log Fano varieties , 2011, Journal für die reine und angewandte Mathematik (Crelles Journal).
[51] S. Donaldson,et al. Kahler-Einstein metrics on Fano manifolds, III: limits as cone angle approaches 2\pi\ and completion of the main proof , 2013, 1302.0282.
[52] Y. Hashimoto. Mapping properties of the Hilbert and Fubini–Study maps in Kähler geometry , 2017, 1705.11025.
[53] M. Jonsson,et al. Thresholds, valuations, and K-stability , 2017, Advances in Mathematics.