Complete Axiomatization of Discrete-Measure Almost-Everywhere Quantification
暂无分享,去创建一个
Cristina Sernadas | João Rasga | Amílcar Sernadas | Luís Cruz-Filipe | L. Cruz-Filipe | A. Sernadas | C. Sernadas | J. Rasga
[1] Leon Henkin,et al. The completeness of the first-order functional calculus , 1949, Journal of Symbolic Logic.
[2] Rudolf Carnap,et al. Logical foundations of probability , 1951 .
[3] H. Keisler. Logic with the quantifier “there exist uncountably many” , 1970 .
[4] Ernest W. Adams,et al. The logic of ‘Almost all’ , 1974, J. Philos. Log..
[5] S. Shelah. Generalized quantifiers and compact logic , 1975 .
[6] Philip L. Peterson,et al. On the logic of "few", "many", and "most" , 1979, Notre Dame J. Formal Log..
[7] A. Mostowski. On a generalization of quantifiers , 1957 .
[8] Raymond Reiter,et al. A Logic for Default Reasoning , 1987, Artif. Intell..
[9] J. Barwise,et al. Generalized quantifiers and natural language , 1981 .
[10] M. Kaufmann. Chapter IV: The Quantifier "There Exist Uncountably Many" and Some of Its Relatives , 1985 .
[11] Silvio Micali,et al. The knowledge complexity of interactive proof-systems , 1985, STOC '85.
[12] Saharon Shelah,et al. Stationary logic and its friends. I , 1985, Notre Dame J. Formal Log..
[13] Patrick Billingsley,et al. Probability and Measure. , 1986 .
[14] Editors , 1986, Brain Research Bulletin.
[15] H. Jerome Keisler. A completeness proof for adapted probability logic , 1986, Ann. Pure Appl. Log..
[16] Saharon Shelah,et al. Stationary logic and its friends. II , 1985, Notre Dame J. Formal Log..
[17] H. Jerome Keisler. Hyperfinite models of adapted probability logic , 1986, Ann. Pure Appl. Log..
[18] Joseph Y. Halpern. An Analysis of First-Order Logics of Probability , 1989, IJCAI.
[19] Johan van Benthem,et al. Directions in generalized quantifier theory , 1995, Stud Logica.
[20] Paulo A. S. Veloso,et al. Ultrafilter Logic and Generic Reasoning , 1997, Kurt Gödel Colloquium.
[21] Russ Bubley,et al. Randomized algorithms , 2018, CSUR.
[22] M. de Rijke,et al. Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.
[23] Ian F. Carlstrom. Truth and entailment for a vague quantifier , 1975, Synthese.
[24] Paulo A. S. Veloso,et al. On Ultrafilter Logic and Special Functions , 2004, Stud Logica.
[25] Martín Abadi,et al. Deciding knowledge in security protocols under equational theories , 2004, Theor. Comput. Sci..
[26] Bogdan Warinschi,et al. Completeness Theorems for the Abadi-Rogaway Language of Encrypted Expressions , 2004, J. Comput. Secur..
[27] António Pacheco,et al. Probabilistic Situation Calculus , 2001, Annals of Mathematics and Artificial Intelligence.
[28] Mehmet Giritli. Measure Logics for Spatial Reasoning , 2004, JELIA.
[29] Paulo A. S. Veloso,et al. Logics For Qualitative Reasoning , 2004, Logic, Epistemology, and the Unity of Science.
[30] P. Rousseeuw,et al. Wiley Series in Probability and Mathematical Statistics , 2005 .
[31] Andre Scedrov,et al. Computational and information-theoretic soundness and completeness of formal encryption , 2005, 18th IEEE Computer Security Foundations Workshop (CSFW'05).
[32] Vitaly Shmatikov,et al. Probabilistic Polynomial-Time Semantics for a Protocol Security Logic , 2005, ICALP.
[33] Martín Abadi,et al. Reconciling Two Views of Cryptography (The Computational Soundness of Formal Encryption) , 2007, Journal of Cryptology.
[34] J. K. Hunter,et al. Measure Theory , 2007 .