Complete Axiomatization of Discrete-Measure Almost-Everywhere Quantification

Following recent developments in the topic of generalized quantifiers, and also having in mind applications in the areas of security and artificial intelligence, a conservative enrichment of (two-sorted) first-order logic (FOL) with almost-everywhere quantification is proposed. The completeness of the axiomatization against the measure-heoretic semantics is carried out using a variant of the Lindenbaum–Henkin technique. The independence of the axioms is analysed, and the almost-everywhere quantifier is compared with related notions of generalized quantification. A suitable fragment of the logic is translated to FOL and validity is shown to be preserved.

[1]  Leon Henkin,et al.  The completeness of the first-order functional calculus , 1949, Journal of Symbolic Logic.

[2]  Rudolf Carnap,et al.  Logical foundations of probability , 1951 .

[3]  H. Keisler Logic with the quantifier “there exist uncountably many” , 1970 .

[4]  Ernest W. Adams,et al.  The logic of ‘Almost all’ , 1974, J. Philos. Log..

[5]  S. Shelah Generalized quantifiers and compact logic , 1975 .

[6]  Philip L. Peterson,et al.  On the logic of "few", "many", and "most" , 1979, Notre Dame J. Formal Log..

[7]  A. Mostowski On a generalization of quantifiers , 1957 .

[8]  Raymond Reiter,et al.  A Logic for Default Reasoning , 1987, Artif. Intell..

[9]  J. Barwise,et al.  Generalized quantifiers and natural language , 1981 .

[10]  M. Kaufmann Chapter IV: The Quantifier "There Exist Uncountably Many" and Some of Its Relatives , 1985 .

[11]  Silvio Micali,et al.  The knowledge complexity of interactive proof-systems , 1985, STOC '85.

[12]  Saharon Shelah,et al.  Stationary logic and its friends. I , 1985, Notre Dame J. Formal Log..

[13]  Patrick Billingsley,et al.  Probability and Measure. , 1986 .

[14]  Editors , 1986, Brain Research Bulletin.

[15]  H. Jerome Keisler A completeness proof for adapted probability logic , 1986, Ann. Pure Appl. Log..

[16]  Saharon Shelah,et al.  Stationary logic and its friends. II , 1985, Notre Dame J. Formal Log..

[17]  H. Jerome Keisler Hyperfinite models of adapted probability logic , 1986, Ann. Pure Appl. Log..

[18]  Joseph Y. Halpern An Analysis of First-Order Logics of Probability , 1989, IJCAI.

[19]  Johan van Benthem,et al.  Directions in generalized quantifier theory , 1995, Stud Logica.

[20]  Paulo A. S. Veloso,et al.  Ultrafilter Logic and Generic Reasoning , 1997, Kurt Gödel Colloquium.

[21]  Russ Bubley,et al.  Randomized algorithms , 2018, CSUR.

[22]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[23]  Ian F. Carlstrom Truth and entailment for a vague quantifier , 1975, Synthese.

[24]  Paulo A. S. Veloso,et al.  On Ultrafilter Logic and Special Functions , 2004, Stud Logica.

[25]  Martín Abadi,et al.  Deciding knowledge in security protocols under equational theories , 2004, Theor. Comput. Sci..

[26]  Bogdan Warinschi,et al.  Completeness Theorems for the Abadi-Rogaway Language of Encrypted Expressions , 2004, J. Comput. Secur..

[27]  António Pacheco,et al.  Probabilistic Situation Calculus , 2001, Annals of Mathematics and Artificial Intelligence.

[28]  Mehmet Giritli Measure Logics for Spatial Reasoning , 2004, JELIA.

[29]  Paulo A. S. Veloso,et al.  Logics For Qualitative Reasoning , 2004, Logic, Epistemology, and the Unity of Science.

[30]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[31]  Andre Scedrov,et al.  Computational and information-theoretic soundness and completeness of formal encryption , 2005, 18th IEEE Computer Security Foundations Workshop (CSFW'05).

[32]  Vitaly Shmatikov,et al.  Probabilistic Polynomial-Time Semantics for a Protocol Security Logic , 2005, ICALP.

[33]  Martín Abadi,et al.  Reconciling Two Views of Cryptography (The Computational Soundness of Formal Encryption) , 2007, Journal of Cryptology.

[34]  J. K. Hunter,et al.  Measure Theory , 2007 .