STD-Dependent and Independent Encoding of Input Irregularity as Spike Rate in a Computational Model of a Cerebellar Nucleus Neuron

[1]  Adam Possner,et al.  Cerebellum , 2012, Neurology.

[2]  Erik De Schutter,et al.  Determinants of synaptic integration and heterogeneity in rebound firing explored with data-driven models of deep cerebellar nucleus cells , 2010, Journal of Computational Neuroscience.

[3]  J. Borst The low synaptic release probability in vivo , 2010, Trends in Neurosciences.

[4]  Chris I De Zeeuw,et al.  Differential olivo-cerebellar cortical control of rebound activity in the cerebellar nuclei , 2010, Proceedings of the National Academy of Sciences.

[5]  R. Silver Neuronal arithmetic , 2010, Nature Reviews Neuroscience.

[6]  C. Pedroarena,et al.  Mechanisms Supporting Transfer of Inhibitory Signals into the Spike Output of Spontaneously Firing Cerebellar Nuclear Neurons In Vitro , 2010, The Cerebellum.

[7]  T. Knöpfel,et al.  GlyT2+ Neurons in the Lateral Cerebellar Nucleus , 2009, The Cerebellum.

[8]  E. De Schutter,et al.  Patterns and pauses in Purkinje cell simple spike trains: experiments, modeling and theory , 2009, Neuroscience.

[9]  Reza Tadayonnejad,et al.  Reliability of triggering postinhibitory rebound bursts in deep cerebellar neurons , 2009, Channels.

[10]  J. Rothman,et al.  Synaptic depression enables neuronal gain control , 2009, Nature.

[11]  S. Khosrovani,et al.  Purkinje Cell Input to Cerebellar Nuclei in Tottering: Ultrastructure and Physiology , 2008, The Cerebellum.

[12]  Adam Kohn,et al.  Questioning the role of rebound firing in the cerebellum , 2008, Nature Neuroscience.

[13]  T. Knöpfel,et al.  GABAergic synaptic communication in the GABAergic and non-GABAergic cells in the deep cerebellar nuclei , 2008, Neuroscience.

[14]  I. Raman,et al.  Mechanisms of Potentiation of Mossy Fiber EPSCs in the Cerebellar Nuclei by Coincident Synaptic Excitation and Inhibition , 2008, The Journal of Neuroscience.

[15]  Freek E. Hoebeek,et al.  Causes and Consequences of Oscillations in the Cerebellar Cortex , 2008, Neuron.

[16]  Kamran Khodakhah,et al.  Selective regulation of spontaneous activity of neurons of the deep cerebellar nuclei by N‐type calcium channels in juvenile rats , 2008, The Journal of physiology.

[17]  Ad Aertsen,et al.  Regular Patterns in Cerebellar Purkinje Cell Simple Spike Trains , 2007, PloS one.

[18]  Stefan Rotter,et al.  Stochastic description of complex and simple spike firing in cerebellar Purkinje cells , 2007, The European journal of neuroscience.

[19]  Thomas Knöpfel,et al.  Morphological and electrophysiological properties of GABAergic and non-GABAergic cells in the deep cerebellar nuclei. , 2007, Journal of neurophysiology.

[20]  I. Raman,et al.  Potentiation of Mossy Fiber EPSCs in the Cerebellar Nuclei by NMDA Receptor Activation followed by Postinhibitory Rebound Current , 2006, Neuron.

[21]  Kamran Khodakhah,et al.  Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia , 2006, Nature Neuroscience.

[22]  C. I. Zeeuw,et al.  Increased Noise Level of Purkinje Cell Activities Minimizes Impact of Their Modulation during Sensorimotor Control , 2005, Neuron.

[23]  H. Sompolinsky,et al.  Bistability of cerebellar Purkinje cells modulated by sensory stimulation , 2005, Nature Neuroscience.

[24]  M. Häusser,et al.  Determinants of Action Potential Propagation in Cerebellar Purkinje Cell Axons , 2005, The Journal of Neuroscience.

[25]  E. Mugnaini,et al.  The GABAergic cerebello-olivary projection in the rat , 2005, Anatomy and Embryology.

[26]  C. Woolley,et al.  Maintenance of High-Frequency Transmission at Purkinje to Cerebellar Nuclear Synapses by Spillover from Boutons with Multiple Release Sites , 2004, Neuron.

[27]  J. Szentágothai,et al.  Quantitative histological analysis of the cerebellar nuclei in the cat. I. Numerical data on cells and on synapses , 1977, Experimental Brain Research.

[28]  L. Abbott,et al.  Synaptic computation , 2004, Nature.

[29]  Dieter Jaeger,et al.  The Contribution of NMDA and AMPA Conductances to the Control of Spiking in Neurons of the Deep Cerebellar Nuclei , 2003, The Journal of Neuroscience.

[30]  T. Turner,et al.  Enhanced G protein‐dependent modulation of excitatory synaptic transmission in the cerebellum of the Ca2+ channel‐mutant mouse, tottering , 2003, The Journal of physiology.

[31]  Cornelius Schwarz,et al.  Efficacy and short-term plasticity at GABAergic synapses between Purkinje and cerebellar nuclei neurons. , 2003, Journal of neurophysiology.

[32]  Peter Thier,et al.  Morphological classification of the rat lateral cerebellar nuclear neurons by principal component analysis , 2003, The Journal of comparative neurology.

[33]  I. Raman,et al.  Depression of Inhibitory Synaptic Transmission between Purkinje Cells and Neurons of the Cerebellar Nuclei , 2002, The Journal of Neuroscience.

[34]  Im Joo Rhyu,et al.  Bidirectional Alterations in Cerebellar Synaptic Transmission oftottering and rollingCa2+ Channel Mutant Mice , 2002, The Journal of Neuroscience.

[35]  W. Regehr,et al.  Short-term synaptic plasticity. , 2002, Annual review of physiology.

[36]  K. Sawada,et al.  An increased expression of Ca2+ channel α1A subunit immunoreactivity in deep cerebellar neurons of rolling mouse Nagoya , 2001, Neuroscience Letters.

[37]  Maarten A. Frens,et al.  Expression of Protein Kinase C Inhibitor Blocks Cerebellar Long-Term Depression without Affecting Purkinje Cell Excitability in Alert Mice , 2001, The Journal of Neuroscience.

[38]  E. Fortune,et al.  Short-term synaptic plasticity as a temporal filter , 2001, Trends in Neurosciences.

[39]  P. Thier,et al.  Two types of neurons in the rat cerebellar nuclei as distinguished by membrane potentials and intracellular fillings. , 2001, Journal of neurophysiology.

[40]  F. Tempia,et al.  Postsynaptic currents in deep cerebellar nuclei. , 2001, Journal of neurophysiology.

[41]  S G Lisberger,et al.  Changes in the responses of Purkinje cells in the floccular complex of monkeys after motor learning in smooth pursuit eye movements. , 2000, Journal of neurophysiology.

[42]  E. Fortune,et al.  Short-Term Synaptic Plasticity Contributes to the Temporal Filtering of Electrosensory Information , 2000, The Journal of Neuroscience.

[43]  Y. Chung,et al.  Immunohistochemical study on the distribution of the voltage-gated calcium channel α1B subunit in the mature rat brain , 2000, Brain Research.

[44]  J. Voogd,et al.  Topography of cerebellar nuclear projections to the brain stem in the rat. , 2000, Progress in brain research.

[45]  D. Linden,et al.  Regulation of the rebound depolarization and spontaneous firing patterns of deep nuclear neurons in slices of rat cerebellum. , 1999, Journal of neurophysiology.

[46]  R. Zucker Calcium- and activity-dependent synaptic plasticity , 1999, Current Opinion in Neurobiology.

[47]  C. Sotelo,et al.  An ultrastructural study of granule cell/Purkinje cell synapses in tottering (tg/tg), leaner (tgla /tgla ) and compound heterozygous tottering/leaner (tg/tgla ) mice , 1999, Neuroscience.

[48]  Kazuto Yamazaki,et al.  Single Tottering Mutations Responsible for the Neuropathic Phenotype of the P-type Calcium Channel* , 1998, The Journal of Biological Chemistry.

[49]  S. Hestrin,et al.  Frequency-dependent synaptic depression and the balance of excitation and inhibition in the neocortex , 1998, Nature Neuroscience.

[50]  Frances S. Chance,et al.  Synaptic Depression and the Temporal Response Characteristics of V1 Cells , 1998, The Journal of Neuroscience.

[51]  L. Abbott,et al.  A Quantitative Description of Short-Term Plasticity at Excitatory Synapses in Layer 2/3 of Rat Primary Visual Cortex , 1997, The Journal of Neuroscience.

[52]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[53]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[54]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[55]  T. Otis,et al.  Direct Measurement of AMPA Receptor Desensitization Induced by Glutamatergic Synaptic Transmission , 1996, The Journal of Neuroscience.

[56]  Richard Hawkes,et al.  Absence Epilepsy in Tottering Mutant Mice Is Associated with Calcium Channel Defects , 1996, Cell.

[57]  D Colquhoun,et al.  Deactivation and desensitization of non‐NMDA receptors in patches and the time course of EPSCs in rat cerebellar granule cells. , 1996, The Journal of physiology.

[58]  William R. Softky,et al.  Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. , 1996, Journal of neurophysiology.

[59]  G. Westbrook,et al.  The impact of receptor desensitization on fast synaptic transmission , 1996, Trends in Neurosciences.

[60]  J. Ruppersberg Ion Channels in Excitable Membranes , 1996 .

[61]  C. I. Zeeuw,et al.  Postsynaptic Targets of Purkinje Cell Terminals in the Cerebellar and Vestibular Nuclei of the Rat , 1995, The European journal of neuroscience.

[62]  James M. Bower,et al.  The Book of GENESIS , 1994, Springer New York.

[63]  C I De Zeeuw,et al.  Projections of individual Purkinje cells of identified zones in the flocculus to the vestibular and cerebellar nuclei in the rabbit. , 1994, The Journal of comparative neurology.

[64]  I. Mody,et al.  Modulation of decay kinetics and frequency of GABAA receptor-mediated spontaneous inhibitory postsynaptic currents in hippocampal neurons , 1992, Neuroscience.

[65]  K. Isaacs,et al.  Development of the paramedian lobule of the cerebellum in wild-type and tottering mice. , 1992, Developmental neuroscience.

[66]  J. Billard,et al.  The interposito-rubrospinal system. Anatomical tracing of a motor control pathway in the rat , 1987, Neuroscience Research.

[67]  F. Crépel,et al.  Electrophysiological studies on the postnatal development of intracerebellar nuclei neurons in rat cerebellar slices maintained in vitro. II. Membrane conductances. , 1985, Brain research.

[68]  F. Crépel,et al.  Electrophysiological studies on the postnatal development of intracerebellar nuclei neurons in rat cerebellar slices maintained in vitro. I. Postsynaptic potentials. , 1985, Brain research.

[69]  D. Armstrong,et al.  Activity patterns of cerebellar cortical neurones and climbing fibre afferents in the awake cat. , 1979, The Journal of physiology.

[70]  H. Meier,et al.  Three syndromes produced by two mutant genes in the mouse. Clinical, pathological, and ultrastructural bases of tottering, leaner, and heterozygous mice. , 1971, The Journal of heredity.

[71]  N. H. Sabah,et al.  Spontaneous firing of cerebellar Purkinje cells in decerebrate and barbiturate anesthetized cats. , 1970, Brain research.

[72]  Richard L. Sidman,et al.  Tottering- a neuromuscular mutation in the mouse and its linkage with oligosyndactylism. , 1962 .