Raloxifene inhibits cloned Kv4.3 channels in an estrogen receptor-independent manner

[1]  U. Ravens,et al.  Accessory subunits alter the temperature sensitivity of Kv4.3 channel complexes. , 2013, Journal of molecular and cellular cardiology.

[2]  R. Recker,et al.  Long-term raloxifene for postmenopausal osteoporosis , 2011, Current medical research and opinion.

[3]  S. Hahn,et al.  Rosiglitazone inhibits Kv4.3 potassium channels by open‐channel block and acceleration of closed‐state inactivation , 2011, British journal of pharmacology.

[4]  Jun Wang,et al.  Effects of Raloxifene on Voltage- Dependent T-Type Ca2+ Channels in Mouse Spermatogenic Cells , 2011, Pharmacology.

[5]  Gui-Rong Li,et al.  The selective estrogen receptor modulator raloxifene inhibits cardiac delayed rectifier potassium currents and voltage-gated sodium current without QTc interval prolongation. , 2010, Pharmacological research.

[6]  M. Yen,et al.  Cardioprotective effects of long-term treatment with raloxifene, a selective estrogen receptor modulator, on myocardial ischemia/reperfusion injury in ovariectomized rats , 2010, Menopause.

[7]  E. Stefani,et al.  Estrogen Contributes to Gender Differences in Mouse Ventricular Repolarization , 2009, Circulation research.

[8]  S. T. Harris,et al.  Current and emerging therapies for osteoporosis. , 2009, The Journal of family practice.

[9]  J. Hancox,et al.  Recent advances in understanding sex differences in cardiac repolarization. , 2007, Progress in biophysics and molecular biology.

[10]  C. Lau,et al.  Raloxifene inhibits transient outward and ultra-rapid delayed rectifier potassium currents in human atrial myocytes. , 2007, European journal of pharmacology.

[11]  Zhao-yong Yang,et al.  The determination of raloxifene in rat tissue using HPLC. , 2007, Biomedical chromatography : BMC.

[12]  E. Stefani,et al.  Heart hypertrophy during pregnancy: a better functioning heart? , 2006, Trends in cardiovascular medicine.

[13]  K. Sung,et al.  Interaction of Riluzole with the Closed Inactivated State of Kv4.3 Channels , 2006, Journal of Pharmacology and Experimental Therapeutics.

[14]  L. Minutoli,et al.  Cardiovascular effects of raloxifene hydrochloride. , 2006, Cardiovascular drug reviews.

[15]  G. Bett,et al.  KChIP2b modulates the affinity and use-dependent block of Kv4.3 by nifedipine. , 2006, Biochemical and biophysical research communications.

[16]  K. Sung,et al.  Inhibition of the cloned delayed rectifier K+ channels, Kv1.5 and Kv3.1, by riluzole , 2005, Neuroscience.

[17]  E. Stefani,et al.  Molecular and Functional Signature of Heart Hypertrophy During Pregnancy , 2005, Circulation research.

[18]  Huimin Lin,et al.  SPECIES- AND DISPOSITION MODEL-DEPENDENT METABOLISM OF RALOXIFENE IN GUT AND LIVER: ROLE OF UGT1A10 , 2005, Drug Metabolism and Disposition.

[19]  M. Gollasch,et al.  Raloxifene Relaxes Rat Cerebral Arteries In Vitro and Inhibits L-Type Voltage-Sensitive Ca2+ Channels , 2004, Stroke.

[20]  Andrew W Varga,et al.  Structure and function of Kv4-family transient potassium channels. , 2004, Physiological reviews.

[21]  M. Hori,et al.  Raloxifene Improves Coronary Perfusion, Cardiac Contractility, and Myocardial Metabolism in the Ischemic Heart: Role of Phosphatidylinositol 3-Kinase/Akt Pathway , 2004, Journal of cardiovascular pharmacology.

[22]  R. Parai,et al.  Regulation of Kv4.3 voltage‐dependent gating kinetics by KChIP2 isoforms , 2004, The Journal of physiology.

[23]  J. Tamargo,et al.  Pharmacology of Cardiac Potassium Channels , 2003 .

[24]  M. Heringa Review on raloxifene: profile of a selective estrogen receptor modulator. , 2003, International journal of clinical pharmacology and therapeutics.

[25]  C. Klinge,et al.  Identification of estrogen receptor beta expression in Chinese hamster ovary (CHO) cells and comparison of estrogen-responsive gene transcription in cells adapted to serum-free media , 2003, The Journal of Steroid Biochemistry and Molecular Biology.

[26]  扇田 久和 Amelioration of Ischemia-and Reperfusion-induced Myocardial Injury by the Selective Estrogen Receptor Modulator, Raloxifene, in the Canine Heart , 2003 .

[27]  P. Collins,et al.  Raloxifene acutely suppresses ventricular myocyte contractility through inhibition of the L‐type calcium current , 2003, British journal of pharmacology.

[28]  R. Ramirez,et al.  Regulation of cardiac excitation–contraction coupling by action potential repolarization: role of the transient outward potassium current (Ito) , 2003, The Journal of physiology.

[29]  H. Strauss,et al.  Kinetic properties of Kv4.3 and their modulation by KChIP2b. , 2002, Biochemical and biophysical research communications.

[30]  Jeffrey C Stevens,et al.  Characterization of raloxifene glucuronidation in vitro: contribution of intestinal metabolism to presystemic clearance. , 2002, Drug metabolism and disposition: the biological fate of chemicals.

[31]  N. Wenger Cardiovascular effects of raloxifene: the potential for cardiovascular protection in women , 2002, Diabetes, obesity & metabolism.

[32]  K. Rhodes,et al.  Remodelling inactivation gating of Kv4 channels by KChIP1, a small‐molecular‐weight calcium‐binding protein , 2002, The Journal of physiology.

[33]  G. Helguera,et al.  Remodeling of Kv4.3 Potassium Channel Gene Expression under the Control of Sex Hormones* , 2001, The Journal of Biological Chemistry.

[34]  M. Covarrubias,et al.  Kv4 channels exhibit modulation of closed-state inactivation in inside-out patches. , 2001, Biophysical journal.

[35]  D. Muchmore Raloxifene: A selective estrogen receptor modulator (SERM) with multiple target system effects. , 2000, The oncologist.

[36]  L. Seipel,et al.  Molecular Remodeling of Kv4.3 Potassium Channels in Human Atrial Fibrillation , 2000, Journal of cardiovascular electrophysiology.

[37]  S. Valenzuela,et al.  Blockade by N‐3 polyunsaturated fatty acid of the Kv4.3 current stably expressed in Chinese hamster ovary cells , 1999, British journal of pharmacology.

[38]  D. Snyders,et al.  Structure and function of cardiac potassium channels. , 1999, Cardiovascular research.

[39]  H. Bryant,et al.  An estrogen receptor basis for raloxifene action in boneProceedings of Xth International Congress on Hormonal Steroids, Quebec, Canada, 17–21 June 1998. , 1999, The Journal of Steroid Biochemistry and Molecular Biology.

[40]  G. Steinbeck,et al.  Molecular basis of transient outward potassium current downregulation in human heart failure: a decrease in Kv4.3 mRNA correlates with a reduction in current density. , 1998, Circulation.

[41]  W. Giles,et al.  Molecular cloning and tissue distribution of an alternatively spliced variant of an A‐type K+ channel α‐subunit, Kv4.3 in the rat , 1997, FEBS letters.

[42]  J. Tamargo,et al.  Block of human cardiac Kv1.5 channels by loratadine: voltage-, time- and use-dependent block at concentrations above therapeutic levels. , 1997, Cardiovascular research.

[43]  S. Nattel,et al.  Effects of class III antiarrhythmic drugs on transient outward and ultra-rapid delayed rectifier currents in human atrial myocytes. , 1997, The Journal of pharmacology and experimental therapeutics.

[44]  J. Dodge,et al.  Evaluation of the major metabolites of raloxifene as modulators of tissue selectivity , 1997, The Journal of Steroid Biochemistry and Molecular Biology.

[45]  D. Mckinnon,et al.  Role of the Kv4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current. , 1996, Circulation research.

[46]  D. Snyders,et al.  Determinants of antiarrhythmic drug action. Electrostatic and hydrophobic components of block of the human cardiac hKv1.5 channel. , 1995, Circulation research.

[47]  M. I. Steinberg,et al.  LY 97241 accelerates the apparent rate of inactivation of transient outward K+ current: characterization of open channel block. , 1995, The Journal of pharmacology and experimental therapeutics.

[48]  D. Snyders,et al.  A rapidly activating and slowly inactivating potassium channel cloned from human heart. Functional analysis after stable mammalian cell culture expression , 1993, The Journal of general physiology.

[49]  S. Demo,et al.  The inactivation gate of the Shaker K+ channel behaves like an open-channel blocker , 1991, Neuron.

[50]  J. Butterworth,et al.  Molecular Mechanisms of Local Anesthesia: A Review , 1990, Anesthesiology.

[51]  F. Bezanilla,et al.  Activation of squid axon K+ channels. Ionic and gating current studies , 1985, The Journal of general physiology.

[52]  S. Thompson Aminopyridine block of transient potassium current , 1982, The Journal of general physiology.

[53]  J. Nerbonne,et al.  Molecular determinants of cardiac transient outward potassium current (I(to)) expression and regulation. , 2010, Journal of molecular and cellular cardiology.

[54]  D. Johnston,et al.  Acceleration of K+ channel inactivation by MEK inhibitor U0126. , 2006, American journal of physiology. Cell physiology.

[55]  N. Sparano,et al.  Raloxifene hydrochloride. , 2000, American journal of health-system pharmacy : AJHP : official journal of the American Society of Health-System Pharmacists.

[56]  D. Fowlkes,et al.  Comparative analyses of mechanistic differences among antiestrogens. , 1999, Endocrinology.

[57]  B. Fermini,et al.  Effects of flecainide, quinidine, and 4-aminopyridine on transient outward and ultrarapid delayed rectifier currents in human atrial myocytes. , 1995, The Journal of pharmacology and experimental therapeutics.