Optimal Feature Extraction and Classification of Tensors via Matrix Product State Decomposition

Big data consists of large multidimensional datasets that would often be difficult to analyze if working with the original tensor. There is a rising interest in the use of tensor decompositions for feature extraction due to the ability to extract necessary features from a large dimensional feature space. In this paper the matrix product state (MPS) decomposition is used for feature extraction of large tensors. The novelty of the paper is the introduction of a single core tensor obtained from the MPS that not only contains a significantly reduced feature space, but can perform classification with high accuracy without the need of feature selection methods.

[1]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[2]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[3]  J. Zittartz,et al.  Matrix Product Ground States for One-Dimensional Spin-1 Quantum Antiferromagnets , 1993, cond-mat/9307028.

[4]  A. Cichocki,et al.  Tensor decompositions for feature extraction and classification of high dimensional datasets , 2010 .

[5]  Haiping Lu,et al.  MPCA: Multilinear Principal Component Analysis of Tensor Objects , 2008, IEEE Transactions on Neural Networks.

[6]  Sabine Van Huffel,et al.  Best Low Multilinear Rank Approximation of Higher-Order Tensors, Based on the Riemannian Trust-Region Scheme , 2011, SIAM J. Matrix Anal. Appl..

[7]  Demetri Terzopoulos,et al.  Multilinear Analysis of Image Ensembles: TensorFaces , 2002, ECCV.

[8]  Massimiliano Pontil,et al.  Support Vector Machines for 3D Object Recognition , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  L. Tucker,et al.  Some mathematical notes on three-mode factor analysis , 1966, Psychometrika.

[10]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[12]  Laurence T. Yang,et al.  A Tensor-Based Approach for Big Data Representation and Dimensionality Reduction , 2014, IEEE Transactions on Emerging Topics in Computing.

[13]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[14]  Salah Bourennane,et al.  Multidimensional filtering based on a tensor approach , 2005, Signal Process..

[15]  Haiping Lu,et al.  A survey of multilinear subspace learning for tensor data , 2011, Pattern Recognit..

[16]  D Porras,et al.  Density matrix renormalization group and periodic boundary conditions: a quantum information perspective. , 2004, Physical review letters.

[17]  Andrzej Cichocki,et al.  Tensor Decompositions for Signal Processing Applications: From two-way to multiway component analysis , 2014, IEEE Signal Processing Magazine.

[18]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[19]  Guifré Vidal Efficient simulation of one-dimensional quantum many-body systems. , 2004, Physical review letters.

[20]  Östlund,et al.  Thermodynamic limit of density matrix renormalization. , 1995, Physical review letters.

[21]  Dan Schonfeld,et al.  Multilinear Discriminant Analysis for Higher-Order Tensor Data Classification , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Stepán Obdrzálek,et al.  Object recognition methods based on transformation covariant features , 2004, 2004 12th European Signal Processing Conference.

[23]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[24]  L. Lathauwer,et al.  Dimensionality reduction in higher-order signal processing and rank-(R1,R2,…,RN) reduction in multilinear algebra , 2004 .

[25]  Liqing Zhang,et al.  Temporal and Spatial Features of Single-Trial EEG for Brain-Computer Interface , 2007, Comput. Intell. Neurosci..

[26]  G. Vidal Efficient classical simulation of slightly entangled quantum computations. , 2003, Physical review letters.

[27]  Raphaël Marée,et al.  Random subwindows for robust image classification , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[28]  Narendra Ahuja,et al.  Learning to Recognize 3D Objects with SNoW , 2000, ECCV.

[29]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[30]  Kennedy,et al.  Rigorous results on valence-bond ground states in antiferromagnets. , 1987, Physical review letters.

[31]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[32]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..