Systematic Computational and Experimental Investigation of Lithium-Ion Transport Mechanisms in Polyester-Based Polymer Electrolytes

Understanding the mechanisms of lithium-ion transport in polymers is crucial for the design of polymer electrolytes. We combine modular synthesis, electrochemical characterization, and molecular simulation to investigate lithium-ion transport in a new family of polyester-based polymers and in poly(ethylene oxide) (PEO). Theoretical predictions of glass-transition temperatures and ionic conductivities in the polymers agree well with experimental measurements. Interestingly, both the experiments and simulations indicate that the ionic conductivity of PEO, relative to the polyesters, is far higher than would be expected from its relative glass-transition temperature. The simulations reveal that diffusion of the lithium cations in the polyesters proceeds via a different mechanism than in PEO, and analysis of the distribution of available cation solvation sites in the various polymers provides a novel and intuitive way to explain the experimentally observed ionic conductivities. This work provides a platform for the evaluation and prediction of ionic conductivities in polymer electrolyte materials.

[1]  Susanne Hertz,et al.  Statistical Mechanics Of Chain Molecules , 2016 .

[2]  G. Coates,et al.  Poly(propylene succinate): a new polymer stereocomplex. , 2014, Journal of the American Chemical Society.

[3]  Lynden A. Archer,et al.  Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. , 2014, Journal of the American Chemical Society.

[4]  E. Kramer,et al.  Allyl Glycidyl Ether-Based Polymer Electrolytes for Room Temperature Lithium Batteries , 2013 .

[5]  Steven J. Plimpton,et al.  Implementing molecular dynamics on hybrid high performance computers - Particle-particle particle-mesh , 2012, Comput. Phys. Commun..

[6]  D. Brandell,et al.  Branched polyethylene/poly(ethylene oxide) as a host matrix for Li-ion battery electrolytes: A molecular dynamics study , 2011 .

[7]  Y. Tominaga,et al.  Utilization of carbon dioxide for polymer electrolytes [II]: Synthesis of alternating copolymers with glycidyl ethers as novel ion-conductive polymers , 2011 .

[8]  Maureen H. Tang,et al.  Effect of molecular weight on conductivity of polymer electrolytes , 2011 .

[9]  G. Coates,et al.  Ring-opening copolymerization of maleic anhydride with epoxides: a chain-growth approach to unsaturated polyesters. , 2011, Journal of the American Chemical Society.

[10]  Peng Wang,et al.  Implementing molecular dynamics on hybrid high performance computers - short range forces , 2011, Comput. Phys. Commun..

[11]  J. Kawamura,et al.  Thermal and dielectric studies of polymer electrolyte based on P(ECH-EO) , 2011 .

[12]  Mizuki Nakamura,et al.  Alternating copolymers of carbon dioxide with glycidyl ethers for novel ion-conductive polymer electrolytes , 2010 .

[13]  Byeongdu Lee,et al.  Erratum: Structure, dynamics, and power conversion efficiency correlations in a new low bandgap polymer: PCBM solar cell (The Journal of Physical Chemistry B) , 2010 .

[14]  C. Wick,et al.  Computational Investigation on the Role of Plasticizers on Ion Conductivity in Poly(ethylene oxide) LiTFSI Electrolytes , 2010 .

[15]  Andreas Heuer,et al.  Understanding the Lithium Transport within a Rouse-Based Model for a PEO/LiTFSI Polymer Electrolyte , 2010 .

[16]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[17]  Daniel Brandell,et al.  A Molecular Dynamics study of the influence of side-chain length and spacing on lithium mobility in non-crystalline LiPF6·PEOx; x = 10 and 30 , 2009 .

[18]  Ryan C. Jeske,et al.  Alternating copolymerization of epoxides and cyclic anhydrides: an improved route to aliphatic polyesters. , 2007, Journal of the American Chemical Society.

[19]  Cation transport in polymer electrolytes: a microscopic approach. , 2007, Physical review letters.

[20]  G. Kamath,et al.  Application of TraPPE-UA force field for determination of vapor–liquid equilibria of carboxylate esters , 2006 .

[21]  Oleg Borodin,et al.  Mechanism of Ion Transport in Amorphous Poly(ethylene oxide)/LiTFSI from Molecular Dynamics Simulations , 2006 .

[22]  M. Ribeiro,et al.  Molecular dynamics simulation of the polymer electrolyte poly(ethylene oxide)/LiClO(4). II. Dynamical properties. , 2005, The Journal of chemical physics.

[23]  Paul Redfern,et al.  Mechanisms of lithium transport in amorphous polyethylene oxide. , 2005, The Journal of chemical physics.

[24]  Y. Ikeda,et al.  Ionic conductivity of polymer solid electrolyte prepared from poly[epichlorohydrin-co-(ethylene oxide)] of high ethylene oxide content , 2005 .

[25]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 6. United-Atom Description for Ethers, Glycols, Ketones, and Aldehydes , 2004 .

[26]  C. Weder,et al.  Solid polymer electrolytes based on nanocomposites of ethylene oxide–epichlorohydrin copolymers and cellulose whiskers , 2004 .

[27]  L. J. Lyons,et al.  Ion conductive characteristics of cross-linked network polysiloxane-based solid polymer electrolytes , 2004 .

[28]  O. Borodin,et al.  MD Simulations and Experimental Study of Structure, Dynamics, and Thermodynamics of Poly(ethylene oxide) and Its Oligomers , 2003 .

[29]  M. Watanabe,et al.  Polymer electrolytes derived from dendritic polyether macromonomers , 2002 .

[30]  Y. Ikeda,et al.  Ionic conductivity and mechanical properties of polymer networks prepared from high molecular weight branched poly(oxyethylene)s , 2002 .

[31]  R. Marzke,et al.  High Li + Self-Diffusivity and Transport Number in Novel Electrolyte Solutions , 2001 .

[32]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[33]  P. Johansson,et al.  The Influence of Inert Oxide Fillers on Poly(ethylene oxide) and Amorphous Poly(ethylene oxide) Based Polymer Electrolytes , 2001 .

[34]  B. Scrosati,et al.  Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes , 2001 .

[35]  H. Sekiguchi,et al.  Lithium ion conductivity in polyoxyethylene/polyethylenimine blends , 2001 .

[36]  Ionic conductivity in the poly(ethylene malonate)/lithium triflate system , 2001 .

[37]  J. Kerr,et al.  Performance limitations of polymer electrolytes based on ethylene oxide polymers , 2000 .

[38]  J. Ilja Siepmann,et al.  Transferable Potentials for Phase Equilibria. 4. United-Atom Description of Linear and Branched Alkenes and Alkylbenzenes , 2000 .

[39]  J. Ilja Siepmann,et al.  Novel Configurational-Bias Monte Carlo Method for Branched Molecules. Transferable Potentials for Phase Equilibria. 2. United-Atom Description of Branched Alkanes , 1999 .

[40]  Shinzo Kohjiya,et al.  High ionic conductivity of new polymer electrolytes based on high molecular weight polyether comb polymers , 1998 .

[41]  W. Meyer,et al.  Polymer electrolytes for lithium-ion batteries. , 1998, Advanced materials.

[42]  R. Torresi,et al.  NMR and Conductivity Studies of Ethylene Oxide-Epichloridrine Copolymer Doped with LiClO4 , 1997 .

[43]  S. Neyertz,et al.  Local structure and mobility of ions in polymer electrolytes: A molecular dynamics simulation study of the amorphous PEOxNaI system , 1996 .

[44]  J. Fauvarque,et al.  Solid polymer electrolytes based on statistical poly (ethylene oxide-propylene oxide) copolymers , 1995 .

[45]  W. V. Gunsteren,et al.  Computer simulation of a polymer electrolyte: Lithium iodide in amorphous poly(ethylene oxide) , 1995 .

[46]  M. Armand,et al.  Electrochemical behavior of lithium electrolytes based on new polyether networks , 1994 .

[47]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[48]  C. Booth,et al.  Preparation and properties of stat-copoly-(oxyethylene-oxypropylene)-block-poly (oxyethylene): 1. Use of crown ether in the anionic copolymerization of propylene oxide and ethylene oxide , 1992 .

[49]  F. M. Gray Solid Polymer Electrolytes: Fundamentals and Technological Applications , 1991 .

[50]  W. Wieczorek,et al.  Polymer solid electrolytes based on ethylene oxide copolymers , 1991 .

[51]  H. Allcock,et al.  Complex formation and ionic conductivity of polyphosphazene solid electrolytes , 1986 .

[52]  M. Ratner,et al.  Complex formation of polyethylenimine with sodium triflate and conductivity behavior of the complexes , 1986 .

[53]  N. Ogata,et al.  Ionic conductivity of polymer complexes formed by poly(ethylene succinate) and lithium perchlorate , 1984 .

[54]  N. Ogata,et al.  Ionic conductivity of polymer complexes formed by poly(β-propiolactone) and lithium perchlorate , 1984 .

[55]  Harry R. Allcock,et al.  Polyphosphazene solid electrolytes , 1984 .

[56]  A. Gandini,et al.  Ionic conductivity of polyether‐polyurethane networks containing NaBPh4: A free volume analysis , 1982 .

[57]  M. Ratner,et al.  Structure and ion transport in polymer-salt complexes , 1981 .

[58]  R. Williams,et al.  Journal of American Chemical Society , 1979 .

[59]  P. V. Wright,et al.  Complexes of alkali metal ions with poly(ethylene oxide) , 1973 .

[60]  C. Tanford Macromolecules , 1994, Nature.

[61]  Journal of Chemical Physics , 1932, Nature.