We report the design and operation of an optical fibre manometry catheter for measuring variation in pressure in the oesophagus during peristalsis. Catheters of this kind are used to help diagnose oesophageal disorders by recording the muscular contractions of the oesophageal wall in patients having difficulty swallowing. Traditional oesophageal catheters consist of an array of recording sites enabling pressure measurement from multiple locations along the the oesophagus. However, these catheters tend to be bulky or complex to operate whereas our optical equivalent uses a series of Fibre Bragg Grating (FBG) pressure sensors on a single fibre; significantly reducing complexity and allowing the catheter diameter to be minimised. The data from each FBG was recorded using a solid state spectrometer in which the reflected peaks each covered a number of pixels of the spectrometer. This has enabled the FBG peaks to be tracked in wavelength with sub-nanometre precision resulting in pressure sensitivities of less than 1mmHg. Results from a clinical trial carried out on 10 healthy subjects will be presented. For the trial, each subject was simultaneously intubated with the optical catheter and a commercially available solid-state catheter. Back-to-back readings were taken from both devices during a series of controlled water swallows. Ten swallows were recorded with the catheters sensors positioned in proximal, mid, and distal regions of the oesophagus and the data analysed statistically. The fibre optic device accurately picked up the dynamic variations in pressure, and can react at least as fast as the solid state device.