Chapter 5 – Error analysis of the partitioning procedures

[1]  P. Deuflhard Order and stepsize control in extrapolation methods , 1983 .

[2]  Zahari Zlatev,et al.  Studying variations of pollution levels in a given region of Europe during a long time-period , 2000 .

[3]  Zahari Zlatev,et al.  Numerical integration of chemical ODE problems arising in air pollution models , 1997 .

[4]  Z. Zlatev,et al.  A comparison of the predictions of an eulerian atmospheric transport — chemistry model with experimental measurements over the North sea , 1994 .

[5]  Peter Deuflhard,et al.  Recent progress in extrapolation methods for ordinary differential equations , 1985 .

[6]  J. G. Verwer,et al.  Explicit method for stiff ODEs from atmospheric chemistry , 1995 .

[7]  Naresh Kumar,et al.  A comparison of fast chemical kinetic solvers for air quality modeling , 1992 .

[8]  Zahari Zlatev,et al.  A Eulerian air pollution model for Europe with nonlinear chemistry , 1992 .

[9]  D P Chock,et al.  Comparison of stiff chemistry solvers for air quality modeling. , 1994, Environmental science & technology.

[10]  Peter Deuflhard,et al.  Recent Developments in Chemical Computing , 1990 .

[11]  M. C. Dodge,et al.  A photochemical kinetics mechanism for urban and regional scale computer modeling , 1989 .

[12]  Adrian Sandu,et al.  Benchmarking stiff ode solvers for atmospheric chemistry problems II: Rosenbrock solvers , 1997 .

[13]  Peter Deuflhard,et al.  Efficient numerical simulation and identification of large chemical reaction systems , 1986 .

[14]  M. V. Belyi,et al.  Discrete analogs of boundary integral equations for elliptic boundary value problems , 1996 .

[15]  Zahari Zlatev,et al.  Studying high ozone concentrations by using the Danish Eulerian model , 1993 .

[16]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[17]  Z. Zlatev Partitioning Ode Systems with an Application to Air Pollution Models , 2001 .

[18]  P. Deuflhard,et al.  One-step and extrapolation methods for differential-algebraic systems , 1987 .

[19]  Zahari Zlatev,et al.  Exploiting the Natural Partitioning in the Numerical Solution of ODE Systems Arising in Atmospheric Chemistry , 1996, WNAA.

[20]  Adrian Sandu,et al.  Benchmarking Stiff ODE Solvers for Atmospheric Chemistry Problems I: Implicit versus Explicit , 1996 .

[21]  Zahari Zlatev,et al.  Computer Treatment of Large Air Pollution Models , 1995 .

[22]  Joke Blom,et al.  A comparison of stiff ode solvers for atmospheric chemistry problems , 1995 .

[23]  G. R. Carmichael,et al.  The evaluation of numerical techniques for solution of stiff ordinary differential equations arising from chemical kinetic problems , 1988 .

[24]  Z. Zlatev,et al.  Studying cumulative ozone exposures in Europe during a 7‐year period , 1997 .

[25]  Z. Zlatev,et al.  Relationships between emission sources and excess ozone concentrations , 1996 .

[26]  J. Christensen,et al.  Test of two numerical schemes for use in atmospheric transport-chemistry models , 1993 .

[27]  Jan Verwer,et al.  An evaluation of explicit pseudo-steady-state approximation schemes for stiff ODE systems from chemical kinetics , 1993 .

[28]  Adrian Sandu,et al.  Improved Quasi-Steady-State-Approximation Methods for Atmospheric Chemistry Integration , 1997, SIAM J. Sci. Comput..

[29]  Florian A. Potra,et al.  Efficient Implementation of Fully Implicit Methods for Atmospheric Chemical Kinetics , 1996 .

[30]  Zahari Zlatev,et al.  Three-Dimensional Version of the Danish Eulerian Model , 1995, PARA.

[31]  Z. Zlatev,et al.  Modeling the long-range transport of air pollutants , 1994, IEEE Computational Science and Engineering.