An Inhibitor of Mutant IDH1 Delays Growth and Promotes Differentiation of Glioma Cells

IDHology Among the most exciting drug targets to emerge from cancer genome sequencing projects are two related metabolic enzymes, isocitrate dehydrogenases 1 and 2 (IDH1, IDH2). Mutations in the IDH1 and IDH2 genes are common in certain types of human cancer. Whether inhibition of mutant IDH activity might offer therapeutic benefits is unclear (see the Perspective by Kim and DeBerardinis). F. Wang et al. (p. 622, published online 4 April) isolated a small molecule that selectively inhibits mutant IDH2, describe the structural details of its binding to the mutant enzyme, and show that this compound suppresses the growth of patient-derived leukemia cells harboring the IDH2 mutation. Rohle et al. (p. 626, published online 4 April) show that a small molecule inhibitor of IDH1 selectively slows the growth of patient-derived brain tumor cells with the IDH1 mutation. A small molecule that inhibits a mutant enzyme in tumors slows malignant growth by inducing cancer cell differentiation. [Also see Perspective by Kim and DeBerardinis] The recent discovery of mutations in metabolic enzymes has rekindled interest in harnessing the altered metabolism of cancer cells for cancer therapy. One potential drug target is isocitrate dehydrogenase 1 (IDH1), which is mutated in multiple human cancers. Here, we examine the role of mutant IDH1 in fully transformed cells with endogenous IDH1 mutations. A selective R132H-IDH1 inhibitor (AGI-5198) identified through a high-throughput screen blocked, in a dose-dependent manner, the ability of the mutant enzyme (mIDH1) to produce R-2-hydroxyglutarate (R-2HG). Under conditions of near-complete R-2HG inhibition, the mIDH1 inhibitor induced demethylation of histone H3K9me3 and expression of genes associated with gliogenic differentiation. Blockade of mIDH1 impaired the growth of IDH1-mutant—but not IDH1–wild-type—glioma cells without appreciable changes in genome-wide DNA methylation. These data suggest that mIDH1 may promote glioma growth through mechanisms beyond its well-characterized epigenetic effects.

[1]  Manuela Zucknick,et al.  IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[2]  R. Verhaak,et al.  Transformation by the R Enantiomer of 2-Hydroxyglutarate Linked to EglN Activation , 2012, Nature.

[3]  Jeffrey W. Clark,et al.  Frequent mutation of isocitrate dehydrogenase (IDH)1 and IDH2 in cholangiocarcinoma identified through broad-based tumor genotyping. , 2012, The oncologist.

[4]  A. Viale,et al.  IDH1 mutation is sufficient to establish the glioma hypermethylator phenotype , 2012, Nature.

[5]  S. Gabriel,et al.  Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. , 2010, Cancer cell.

[6]  A. Grigoriadis,et al.  IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours , 2011, The Journal of pathology.

[7]  R. McLendon,et al.  IDH1 and IDH2 mutations in gliomas. , 2009, The New England journal of medicine.

[8]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[9]  R. DePinho,et al.  Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. , 2002, Cancer cell.

[10]  D. Wilkinson,et al.  A feedback loop mediated by degradation of an inhibitor is required to initiate neuronal differentiation. , 2010, Genes & development.

[11]  P. Kleihues,et al.  IDH1 mutations are early events in the development of astrocytomas and oligodendrogliomas. , 2009, The American journal of pathology.

[12]  Zhaoshi Jiang,et al.  Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[13]  L. Liau,et al.  Cancer-associated IDH1 mutations produce 2-hydroxyglutarate , 2009, Nature.

[14]  R. Klose,et al.  The oncometabolite 2‐hydroxyglutarate inhibits histone lysine demethylases , 2011, EMBO reports.

[15]  B. Scheithauer,et al.  The 2007 WHO classification of tumours of the central nervous system , 2007, Acta Neuropathologica.

[16]  Bin Wang,et al.  Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of α-ketoglutarate-dependent dioxygenases. , 2011, Cancer cell.

[17]  C. Schofield,et al.  Structural studies on human 2-oxoglutarate dependent oxygenases. , 2010, Current opinion in structural biology.

[18]  J. Ashby References and Notes , 1999 .

[19]  Ken Chen,et al.  Recurring mutations found by sequencing an acute myeloid leukemia genome. , 2009, The New England journal of medicine.

[20]  G. Reifenberger,et al.  IDH1(R132H) mutation increases murine haematopoietic progenitors and alters epigenetics , 2012, Nature.

[21]  J. Licht,et al.  Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. , 2010, Cancer cell.

[22]  R. Wilson,et al.  Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. , 2010, Cancer cell.

[23]  F. Gage,et al.  Epigenetic choreographers of neurogenesis in the adult mammalian brain , 2010, Nature Neuroscience.

[24]  S. Inoue,et al.  D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. , 2012, Genes & development.

[25]  Thomas Höfer,et al.  Disparate Individual Fates Compose Robust CD8+ T Cell Immunity , 2013, Science.

[26]  Y. Xing,et al.  A Transcriptome Database for Astrocytes, Neurons, and Oligodendrocytes: A New Resource for Understanding Brain Development and Function , 2008, The Journal of Neuroscience.

[27]  S. Gross,et al.  Discovery of the First Potent Inhibitors of Mutant IDH1 That Lower Tumor 2-HG in Vivo. , 2012, ACS medicinal chemistry letters.

[28]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[29]  S. Berger,et al.  IDH mutation impairs histone demethylation and results in a block to cell differentiation , 2012, Nature.