Coupled IEEE 802.11ac and TCP Goodput improvement using Aggregation and Reverse Direction

This paper suggests a new model for the transmission of TCP traffic over IEEE 802.11 using the new features of IEEE 802.11ac . The paper examines a first step in this direction and as such we first consider a single TCP connection, which is typical in a home environment. We show that when the IEEE 802.11ac MAC is aware of QoS TCP traffic, using Reverse Direction improves the TCP Goodput in tens of percentages compared to the traditional contention based channel access. In an error-free channel this improvement is 20% while in an error-prone channel the improvement reaches 60%, also using blind retransmission of frames. In our operation modes we also assume the use in Two-Level aggregation scheme, the ARQ protocol of the IEEE 802.11ac MAC layer and also assume the data rates and the four Access Categories defined in this standard.

[1]  David Malone,et al.  Aggregation With Fragment Retransmission for Very High-Speed WLANs , 2009, IEEE/ACM Transactions on Networking.

[2]  Miguel Garcia,et al.  IEEE 802.11n MAC Mechanisms for High Throughput: a Performance Evaluation , 2011, ICNS 2011.

[3]  David Malone,et al.  Experimental evaluation of TCP performance and fairness in an 802.11e test-bed , 2005, E-WIND '05.

[4]  Changwen Liu,et al.  Delayed Channel Access for IEEE 802.11e Based WLAN , 2006, 2006 IEEE International Conference on Communications.

[5]  T Selvam,et al.  A frame aggregation scheduler for IEEE 802.11n , 2010, 2010 National Conference On Communications (NCC).

[6]  Sunghyun Choi,et al.  Fragmentation / Aggregation Scheme for Throughput Enhancement of IEEE 802 . 11 n WLAN , 2006 .

[7]  Shoba Krishnan,et al.  FRAME AGGREGATION MECHANISM FOR HIGH - THROUGHPUT 802.11 N WLANS , 2012 .

[8]  M. Stamp,et al.  Evaluations and Enhancements in 802.11n WLANs â•fi Error-Sensitive Adaptive Frame Aggregation , 2014 .

[9]  Marco Conti,et al.  Throughput Analysis and Measurements in IEEE 802.11 WLANs with TCP and UDP Traffic Flows , 2008, IEEE Transactions on Mobile Computing.

[10]  Prasun Sinha,et al.  Understanding TCP fairness over wireless LAN , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[11]  Injong Rhee,et al.  CUBIC: a new TCP-friendly high-speed TCP variant , 2008, OPSR.

[12]  Geyong Min,et al.  Adaptive Delayed Channel Access for IEEE 802.11n WLANs , 2008, 2008 4th IEEE International Conference on Circuits and Systems for Communications.

[13]  Oran Sharon,et al.  Coupled IEEE 802.11ac and TCP performance evaluation in various aggregation schemes and Access Categories , 2016, Comput. Networks.

[14]  Sunghyun Choi,et al.  Modeling and analysis of TCP dynamics over IEEE 802.11 WLAN , 2007, 2007 Fourth Annual Conference on Wireless on Demand Network Systems and Services.

[15]  Jaume Barceló,et al.  On the Performance of Packet Aggregation in IEEE 802.11ac MU-MIMO WLANs , 2012, IEEE Communications Letters.

[16]  Eitan Altman,et al.  New Insights From a Fixed-Point Analysis of Single Cell IEEE 802.11 WLANs , 2007, IEEE/ACM Transactions on Networking.

[17]  Eitan Altman,et al.  A queueing model for HTTP traffic over IEEE 802.11 WLANs , 2006, Comput. Networks.

[18]  Ren Wang,et al.  TCP westwood: Bandwidth estimation for enhanced transport over wireless links , 2001, MobiCom '01.

[19]  Vincent W. S. Wong,et al.  WSN01-1: Frame Aggregation and Optimal Frame Size Adaptation for IEEE 802.11n WLANs , 2006, IEEE Globecom 2006.

[20]  Marco Conti,et al.  Throughput Analysis of UDP and TCP Flows in IEEE 802.11b WLANs: A Simple Model and Its Validation , 2005, 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-PERF'05).

[21]  Minyoung Park,et al.  IEEE 802.11ac: Dynamic Bandwidth Channel Access , 2011, 2011 IEEE International Conference on Communications (ICC).

[22]  Abdul Samad Shibghatullah,et al.  Reverse Direction Transmission in Wireless Networks: Review , 2013 .

[23]  Mark Stamp,et al.  Evaluations and Enhancements in 802.11n WLANs â•fi Error-Sensitive Adaptive Frame Aggregation , 2014 .

[24]  Sarunas Paulikas,et al.  Improving TCP Performance in IEEE 802.11 Networks , 2013 .

[25]  Ender Ayanoglu,et al.  Fair and Efficient TCP Access in IEEE 802.11 WLANs , 2008, 2008 IEEE Wireless Communications and Networking Conference.

[26]  Youngsoo Kim,et al.  Adaptive two-level frame aggregation in IEEE 802.11n WLAN , 2012, 2012 18th Asia-Pacific Conference on Communications (APCC).

[27]  Yousri Daldoul,et al.  IEEE 802.11n aggregation performance study for the multicast , 2011, 2011 IFIP Wireless Days (WD).

[28]  Tapani Ristaniemi,et al.  Performance Analysis of IEEE 802.11ac DCF with Hidden Nodes , 2012, 2012 IEEE 75th Vehicular Technology Conference (VTC Spring).

[29]  L. B. Milstein,et al.  On the accuracy of a first-order Markov model for data transmission on fading channels , 1995, Proceedings of ICUPC '95 - 4th IEEE International Conference on Universal Personal Communications.

[30]  Subramaniam Shamala,et al.  An Enhanced A-MSDU Frame Aggregation Scheme for 802.11n Wireless Networks , 2012, Wirel. Pers. Commun..

[31]  Zheng Chang,et al.  IEEE 802.11ac: Enhancements for very high throughput WLANs , 2011, 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications.

[32]  B. Zieliński Efficiency analysis of IEEE 802.11 protocol with block acknowledge and frame aggregation , 2011 .

[33]  Oran Sharon,et al.  MAC level Throughput comparison: 802.11ac vs. 802.11n , 2014, Phys. Commun..

[34]  Ramón Agüero,et al.  Replication of the bursty behavior of indoor WLAN channels , 2013, SimuTools.

[35]  E. Gregori,et al.  Modeling TCP Throughput over Wireless LANs , .

[36]  Jesus Alonso-Zarate,et al.  Experimental evaluation of reverse direction transmissions in WLAN using the WARP platform , 2015, 2015 IEEE International Conference on Communications (ICC).

[37]  Oran Sharon,et al.  A New Aggregation based Scheduling method for rapidly changing IEEE 802.11ac Wireless channels , 2016, ArXiv.

[38]  A. Kesselman,et al.  Performance analysis of A-MPDU and A-MSDU aggregation in IEEE 802.11n , 2007, 2007 IEEE Sarnoff Symposium.

[39]  David Malone,et al.  TCP fairness in 802.11e WLANs , 2005, 2005 International Conference on Wireless Networks, Communications and Mobile Computing.

[40]  Daniel Camps-Mur,et al.  Leveraging 802.11n frame aggregation to enhance QoS and power consumption in Wi-Fi networks , 2012, Comput. Networks.

[41]  Hsiao-Hwa Chen,et al.  IEEE 802.11n MAC frame aggregation mechanisms for next-generation high-throughput WLANs , 2008, IEEE Wireless Communications.

[42]  Qiang Ni,et al.  A Selective Delayed Channel Access (SDCA) for the High-Throughput IEEE 802.11n , 2009, 2009 IEEE Wireless Communications and Networking Conference.

[43]  Woongsup Kim,et al.  TCP Acknowledgement Compression for Fairness Among Uplink TCP Flows in IEEE 802.11n WLANs , 2013 .

[44]  Sunghyun Choi,et al.  Analytical Study of TCP Performance over IEEE 802.11e WLANs , 2009, Mob. Networks Appl..

[45]  Dan Keun Sung,et al.  Effect of Frame Aggregation on the Throughput Performance of IEEE 802.11n , 2008, 2008 IEEE Wireless Communications and Networking Conference.

[46]  Chih-Yu Wang,et al.  IEEE 802.11n MAC Enhancement and Performance Evaluation , 2009, Mob. Networks Appl..

[47]  Oran Sharon,et al.  The combination of aggregation, ARQ, QoS guarantee and mapping of Application flows in Very High Throughput 802.11ac networks , 2015, Phys. Commun..

[48]  Abdul Samad Shibghatullah,et al.  REVERSE DIRECTION TRANSMISSION USING SINGLE DATA FRAME AND MULTI DATA FRAMES TO IMPROVE THE PERFORMANCE OF MAC LAYER BASED ON IEEE 802.11N , 2014 .