A cascade autocatalytic strand displacement amplification and hybridization chain reaction event for label-free and ultrasensitive electrochemical nucleic acid biosensing.

[1]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[2]  C. Prives,et al.  p53: puzzle and paradigm. , 1996, Genes & development.

[3]  K. Livak,et al.  Real time quantitative PCR. , 1996, Genome research.

[4]  T. G. Drummond,et al.  Electrochemical DNA sensors , 2003, Nature Biotechnology.

[5]  Robert M. Dirks,et al.  Triggered amplification by hybridization chain reaction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Itamar Willner,et al.  A virus spotlighted by an autonomous DNA machine. , 2006, Angewandte Chemie.

[7]  Kevin W Plaxco,et al.  Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing , 2007, Nature Protocols.

[8]  Harry M. T. Choi,et al.  Programming biomolecular self-assembly pathways , 2008, Nature.

[9]  G. Lahav,et al.  Recurrent initiation: a mechanism for triggering p53 pulses in response to DNA damage. , 2008, Molecular cell.

[10]  Juewen Liu,et al.  Functional nucleic acid sensors. , 2009, Chemical reviews.

[11]  Itamar Willner,et al.  Amplified analysis of DNA by the autonomous assembly of polymers consisting of DNAzyme wires. , 2011, Journal of the American Chemical Society.

[12]  Xi Chen,et al.  Rational, modular adaptation of enzyme-free DNA circuits to multiple detection methods , 2011, Nucleic acids research.

[13]  G. Seelig,et al.  Dynamic DNA nanotechnology using strand-displacement reactions. , 2011, Nature chemistry.

[14]  P. Craw,et al.  Isothermal nucleic acid amplification technologies for point-of-care diagnostics: a critical review. , 2012, Lab on a chip.

[15]  Chun-yang Zhang,et al.  Sensitive detection of microRNA with isothermal amplification and a single-quantum-dot-based nanosensor. , 2012, Analytical chemistry.

[16]  Huangxian Ju,et al.  Trace and label-free microRNA detection using oligonucleotide encapsulated silver nanoclusters as probes. , 2012, Analytical chemistry.

[17]  Shaojun Dong,et al.  A new approach to light up DNA/Ag nanocluster-based beacons for bioanalysis , 2013 .

[18]  Yu-Qiang Liu,et al.  Sensitive detection of microRNA in complex biological samples via enzymatic signal amplification using DNA polymerase coupled with nicking endonuclease. , 2013, Analytical chemistry.

[19]  Itamar Willner,et al.  Self-assembly of luminescent Ag nanocluster-functionalized nanowires. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[20]  Itamar Willner,et al.  Graphene oxide/nucleic-acid-stabilized silver nanoclusters: functional hybrid materials for optical aptamer sensing and multiplexed analysis of pathogenic DNAs. , 2013, Journal of the American Chemical Society.

[21]  Christopher M. Hindson,et al.  Absolute quantification by droplet digital PCR versus analog real-time PCR , 2013, Nature Methods.

[22]  Wei-Wei Zhao,et al.  Photoelectrochemical DNA biosensors. , 2014, Chemical reviews.

[23]  I. Willner,et al.  Multiplexed analysis of genes using nucleic acid-stabilized silver-nanocluster quantum dots. , 2014, ACS nano.

[24]  Andrew D. Ellington,et al.  Diagnostic Applications of Nucleic Acid Circuits , 2014, Accounts of chemical research.

[25]  Matthew R Foreman,et al.  Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. , 2014, Nature nanotechnology.

[26]  C. Fan,et al.  Isothermal Amplification of Nucleic Acids. , 2015, Chemical reviews.

[27]  Zhiqiang Gao,et al.  The hybridization chain reaction in the development of ultrasensitive nucleic acid assays , 2015 .

[28]  Y. Chai,et al.  Signal-off Electrochemiluminescence Biosensor Based on Phi29 DNA Polymerase Mediated Strand Displacement Amplification for MicroRNA Detection. , 2015, Analytical chemistry.

[29]  Shana O Kelley,et al.  An electrochemical clamp assay for direct, rapid analysis of circulating nucleic acids in serum. , 2015, Nature chemistry.

[30]  Y. Chai,et al.  In situ DNA-templated synthesis of silver nanoclusters for ultrasensitive and label-free electrochemical detection of microRNA. , 2015, ACS applied materials & interfaces.

[31]  Wen Jun Xie,et al.  DNA cross-triggered cascading self-amplification artificial biochemical circuit† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4sc03225j Click here for additional data file. , 2014, Chemical science.

[32]  Tao Liu,et al.  Label-free, isothermal and ultrasensitive electrochemical detection of DNA and DNA 3'-phosphatase using a cascade enzymatic cleavage strategy. , 2015, Chemical communications.

[33]  Longhua Guo,et al.  An electrochemiluminescence biosensor for Kras mutations based on locked nucleic acid functionalized DNA walkers and hyperbranched rolling circle amplification. , 2017, Chemical communications.

[34]  S. Dong,et al.  Nucleic Acid Biosensors: Recent Advances and Perspectives. , 2017, Analytical chemistry.

[35]  Yanqun Wang,et al.  Universal Dynamic DNA Assembly-Programmed Surface Hybridization Effect for Single-Step, Reusable, and Amplified Electrochemical Nucleic Acid Biosensing. , 2017, Analytical chemistry.

[36]  Zhenli Qiu,et al.  CdTe/CdSe quantum dot-based fluorescent aptasensor with hemin/G-quadruplex DNzyme for sensitive detection of lysozyme using rolling circle amplification and strand hybridization. , 2017, Biosensors & bioelectronics.

[37]  Jian-hui Jiang,et al.  Enzyme-free, signal-amplified nucleic acid circuits for biosensing and bioimaging analysis. , 2017, The Analyst.

[38]  Zhenli Qiu,et al.  Bioresponsive Release System for Visual Fluorescence Detection of Carcinoembryonic Antigen from Mesoporous Silica Nanocontainers Mediated Optical Color on Quantum Dot-Enzyme-Impregnated Paper. , 2017, Analytical chemistry.

[39]  Shana O. Kelley,et al.  Chemistry-Driven Approaches for Ultrasensitive Nucleic Acid Detection. , 2017, Journal of the American Chemical Society.

[40]  Meijin Li,et al.  Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device. , 2018, Biosensors & bioelectronics.

[41]  Shenguang Ge,et al.  Ultrasensitive electrochemiluminescence assay of tumor cells and evaluation of H2O2 on a paper-based closed-bipolar electrode by in-situ hybridization chain reaction amplification. , 2018, Biosensors & bioelectronics.

[42]  Zhenli Qiu,et al.  Plasmonic Enhancement Coupling with Defect-Engineered TiO2-x: A Mode for Sensitive Photoelectrochemical Biosensing. , 2018, Analytical chemistry.

[43]  Jing Guo,et al.  An electrochemical biosensor for microRNA-196a detection based on cyclic enzymatic signal amplification and template-free DNA extension reaction with the adsorption of methylene blue. , 2018, Biosensors & bioelectronics.

[44]  Zhenli Qiu,et al.  Near-Infrared-to-Ultraviolet Light-Mediated Photoelectrochemical Aptasensing Platform for Cancer Biomarker Based on Core-Shell NaYF4:Yb,Tm@TiO2 Upconversion Microrods. , 2018, Analytical chemistry.

[45]  Meijin Li,et al.  Bio-bar-code-based photoelectrochemical immunoassay for sensitive detection of prostate-specific antigen using rolling circle amplification and enzymatic biocatalytic precipitation. , 2018, Biosensors & bioelectronics.