Engineering Chemisorption of Fe4 Single‐Molecule Magnets on Gold

Gaining control over the grafting geometry is critically important for any application of surface‐supported single‐molecule magnets (SMMs) in data storage, spintronics, and quantum information science. Here, tetrairon(III) SMMs with a propeller‐like structure are functionalized with thioacetyl‐terminated alkyl chains to promote chemisorption on gold surfaces from solution and to evaluate differences in adsorption geometry and magnetic properties as a function of chain length. The prepared monolayers are investigated using X‐ray absorption techniques with linearly and circularly polarized light to extract geometrical and magnetic information, respectively. All derivatives remain intact and form partially oriented monolayers on the gold surface. A ligand‐field analysis of the observed X‐ray natural linear dichroism shows that the threefold molecular axis is invariably biased toward the surface normal, in agreement with ab initio calculations. This preferential orientation is most pronounced in monolayers of the shortest‐chain derivative, which are further studied with an ultralow temperature X‐ray magnetic circular dichroism setup operating down to 350 mK. The isothermal field sweeps with the magnetic field at normal incidence show an open hysteresis loop below 1 K, while measurements at different incidence angles prove the magnetic anisotropy of the monolayers.

[1]  J. Seco,et al.  Single-Molecule Magnets: From Mn12-ac to dysprosium metallocenes, a travel in time , 2021 .

[2]  A. Popov,et al.  Exceptionally High Blocking Temperature of 17 K in a Surface‐Supported Molecular Magnet , 2021, Advanced materials.

[3]  W. Wernsdorfer,et al.  Measuring molecular magnets for quantum technologies , 2021, Nature Reviews Physics.

[4]  E. Weschke,et al.  Magnetic Hysteresis at 10 K in Single Molecule Magnet Self‐Assembled on Gold , 2021, Advanced science.

[5]  A. Barra,et al.  S-Functionalized Tripods with Monomethylene Spacers: Routes to Tetrairon(III) Single-Molecule Magnets with Ultrashort Tethering Groups , 2020, Magnetochemistry.

[6]  A. Barra,et al.  Unbiased evaluation of zero-field splitting D parameter in high-spin molecules from DC magnetic data with incomplete powder averaging , 2020 .

[7]  H. Wende,et al.  Molecular Nanomagnets , 2020, SpringerBriefs in Applied Sciences and Technology.

[8]  S. Loth,et al.  Quantum dynamics of a single molecule magnet on superconducting Pb(111) , 2020, Nature Materials.

[9]  A. Seitsonen,et al.  Understanding the Superior Stability of Single‐Molecule Magnets on an Oxide Film , 2019, Advanced science.

[10]  M. Mannini,et al.  Propeller-Shaped Fe4 and Fe3 M Molecular Nanomagnets: A Journey from Crystals to Addressable Single Molecules , 2019, European Journal of Inorganic Chemistry.

[11]  M. Fonin,et al.  Bulk-Like Magnetic Signature of Individual Fe4H Molecular Magnets on Graphene. , 2019, ACS nano.

[12]  Fu-Sheng Guo,et al.  Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet , 2018, Science.

[13]  M. Mannini,et al.  Mössbauer spectroscopy of a monolayer of single molecule magnets , 2018, Nature Communications.

[14]  M. Fonin,et al.  Uniaxial 2D Superlattice of Fe4 Molecular Magnets on Graphene. , 2017, Nano letters.

[15]  E. Dalcanale,et al.  Tuning of a Vertical Spin Valve with a Monolayer of Single Molecule Magnets , 2017 .

[16]  B. Cortigiani,et al.  The Challenge of Thermal Deposition of Coordination Compounds: Insight into the Case of an Fe4 Single Molecule Magnet , 2016 .

[17]  M. Pivetta,et al.  Giant Hysteresis of Single‐Molecule Magnets Adsorbed on a Nonmagnetic Insulator , 2016, Advanced materials.

[18]  G. Gao,et al.  Efficient spin filter and spin valve in a single-molecule magnet Fe4 between two graphene electrodes , 2015 .

[19]  S. Loth,et al.  Magnetic fingerprint of individual Fe4 molecular magnets under compression by a scanning tunnelling microscope , 2015, Nature Communications.

[20]  F. Pauly,et al.  Highly Ordered Surface Self-Assembly of Fe₄ Single Molecule Magnets. , 2015, Nano letters.

[21]  H. V. D. van der Zant,et al.  Observing magnetic anisotropy in electronic transport through individual single-molecule magnets , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[22]  B. Cortigiani,et al.  Magnetic bistability in a submonolayer of sublimated Fe4 single-molecule magnets. , 2015, Nano letters.

[23]  V. Sessi,et al.  Coupling of single, double, and triple-decker metal-phthalocyanine complexes to ferromagnetic and antiferromagnetic substrates , 2014 .

[24]  A. Magnani,et al.  Tetrairon(III) single-molecule magnet monolayers on gold: insights from ToF-SIMS and isotopic labeling. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[25]  O. Bunău,et al.  DEIMOS: a beamline dedicated to dichroism measurements in the 350-2500 eV energy range. , 2014, The Review of scientific instruments.

[26]  M. Mannini,et al.  On-surface magnetometry: the evaluation of superexchange coupling constants in surface-wired single-molecule magnets. , 2013, Chemistry.

[27]  F. Choueikani,et al.  Magnetism of TbPc2 SMMs on ferromagnetic electrodes used in organic spintronics. , 2013, Chemical communications.

[28]  F. Totti,et al.  On the kinetics and thermodynamics of S–X (X = H, CH3, SCH3, COCH3, and CN) cleavage in the formation of self-assembled monolayers of alkylthiols on Au(111) , 2012, Theoretical Chemistry Accounts.

[29]  S. Tangestaninejad,et al.  Microwave-promoted efficient conversion of acetophenones to 1,3,5-triarylbenzenes catalyzed by H3PW12O40 and nano-silica supported H3PW12O40 as reusable catalysts , 2012 .

[30]  W. Wernsdorfer,et al.  Supramolecular spin valves. , 2011, Nature materials.

[31]  W. Wernsdorfer,et al.  Graphene spintronic devices with molecular nanomagnets. , 2011, Nano letters.

[32]  J. Cezar,et al.  Spin structure of surface-supported single-molecule magnets from isomorphous replacement and X-ray magnetic circular dichroism. , 2011, Inorganic chemistry.

[33]  A. Caneschi,et al.  A periodic mixed gaussians-plane waves DFT study on simple thiols on Au(111): adsorbate species, surface reconstruction, and thiols functionalization. , 2011, Physical chemistry chemical physics : PCCP.

[34]  Edwige Otero,et al.  Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets , 2010, Nature.

[35]  K. Kern,et al.  Spin and orbital magnetic moment anisotropies of monodispersed bis(phthalocyaninato)terbium on a copper surface. , 2010, Journal of the American Chemical Society.

[36]  A. Talarico,et al.  Magnetic memory of a single-molecule quantum magnet wired to a gold surface. , 2009, Nature materials.

[37]  T. Lee,et al.  SAMs on gold derived from the direct adsorption of alkanethioacetates are inferior to those derived from the direct adsorption of alkanethiols. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[38]  W. Wernsdorfer,et al.  X‐Ray Magnetic Circular Dichroism Picks out Single‐Molecule Magnets Suitable for Nanodevices , 2009 .

[39]  W. Wernsdorfer,et al.  Molecular spintronics using single-molecule magnets. , 2008, Nature materials.

[40]  L. Gorini,et al.  New Single‐Molecule Magnets by Site‐Specific Substitution: Incorporation of “Alligator Clips” into Fe4 Complexes , 2007 .

[41]  Dante Gatteschi,et al.  Tuning anisotropy barriers in a family of tetrairon(III) single-molecule magnets with an S = 5 ground state. , 2006, Journal of the American Chemical Society.

[42]  Stefano Sanvito,et al.  Towards molecular spintronics , 2005, Nature materials.

[43]  C. Pannecouque,et al.  Synthesis and in vitro evaluation of S-acyl-3-thiopropyl prodrugs of Foscarnet. , 2004, Bioorganic & medicinal chemistry.

[44]  W. Wernsdorfer,et al.  Energy-barrier enhancement by ligand substitution in tetrairon(III) single-molecule magnets. , 2004, Angewandte Chemie.

[45]  Michael N. Leuenberger,et al.  Quantum computing in molecular magnets , 2000, Nature.

[46]  D. Myles,et al.  MULTISTEP SYNTHESIS ON THE SURFACE OF SELF-ASSEMBLED THIOLATE MONOLAYERS ON GOLD : PROBING THE MECHANISM OF THE THIAZOLIUM-PROMOTED ACYLOIN CONDENSATI ON , 1997 .

[47]  L. Thomas,et al.  Macroscopic quantum tunnelling of magnetization in a single crystal of nanomagnets , 1996, Nature.

[48]  G. Huttner,et al.  Ambiphile Tripod-Komplexe: Synthese und Komplexchemie langkettiger funktionalisierter Tripod-Liganden RC(CH2PPh2)3 mit R = Pentyl oder 8-Nonenyl , 1994 .

[49]  A. Caneschi,et al.  Magnetic bistability in a metal-ion cluster , 1993, Nature.

[50]  Dante Gatteschi,et al.  Alternating current susceptibility, high field magnetization, and millimeter band EPR evidence for a ground S = 10 state in [Mn12O12(Ch3COO)16(H2O)4].2CH3COOH.4H2O , 1991 .

[51]  W. Neumann,et al.  Versatile methods for the synthesis of differentially functionalized pentaerythritol amine derivatives , 1990 .

[52]  C. Brouder Angular dependence of X-ray absorption spectra , 1990 .

[53]  O. Dermer,et al.  Extensions of the Tollens Condensation , 1954 .

[54]  C. Sangregorio,et al.  Grafting single molecule magnets on gold nanoparticles. , 2014, Small.

[55]  M. Mannini,et al.  XAS and XMCD of Single Molecule Magnets , 2010 .

[56]  A. Magnani,et al.  Deposition of intact tetrairon(III) single molecule magnet monolayers on gold: an STM, XPS, and ToF-SIMS investigation , 2010 .

[57]  B. Tollens,et al.  Ueber den Penta-Erythrit, einen aus Formaldehyd und Acetaldehyd synthetisch hergestellten vierwerthigen Alkohol , 1891 .