Random numbers certified by Bell’s theorem

Randomness is a fundamental feature of nature and a valuable resource for applications ranging from cryptography and gambling to numerical simulation of physical and biological systems. Random numbers, however, are difficult to characterize mathematically, and their generation must rely on an unpredictable physical process. Inaccuracies in the theoretical modelling of such processes or failures of the devices, possibly due to adversarial attacks, limit the reliability of random number generators in ways that are difficult to control and detect. Here, inspired by earlier work on non-locality-based and device-independent quantum information processing, we show that the non-local correlations of entangled quantum particles can be used to certify the presence of genuine randomness. It is thereby possible to design a cryptographically secure random number generator that does not require any assumption about the internal working of the device. Such a strong form of randomness generation is impossible classically and possible in quantum systems only if certified by a Bell inequality violation. We carry out a proof-of-concept demonstration of this proposal in a system of two entangled atoms separated by approximately one metre. The observed Bell inequality violation, featuring near perfect detection efficiency, guarantees that 42 new random numbers are generated with 99 per cent confidence. Our results lay the groundwork for future device-independent quantum information experiments and for addressing fundamental issues raised by the intrinsic randomness of quantum theory.

[1]  Esther Hanggi,et al.  Quantum Cryptography Based Solely on Bell's Theorem , 2009 .

[2]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[3]  A. Fine Hidden Variables, Joint Probability, and the Bell Inequalities , 1982 .

[4]  Noam Nisan,et al.  Extracting Randomness: A Survey and New Constructions , 1999, J. Comput. Syst. Sci..

[5]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[6]  N. Gisin,et al.  General properties of nonsignaling theories , 2005, quant-ph/0508016.

[7]  Lluis Masanes,et al.  Universally-composable privacy amplification from causality constraints , 2008, Physical review letters.

[8]  Andrew Chi-Chih Yao,et al.  Quantum cryptography with imperfect apparatus , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[9]  S. Olmschenk,et al.  Manipulation and detection of a trapped Yb+ hyperfine qubit , 2007, 0708.0657.

[10]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[11]  J. Bell,et al.  Speakable and Unspeakable in Quantum Mechanics: Preface to the first edition , 2004 .

[12]  V. Scarani,et al.  Device-independent security of quantum cryptography against collective attacks. , 2007, Physical review letters.

[13]  C. Luchini,et al.  [High speed]. , 1969, Revista De La Escuela De Odontologia, Universidad Nacional De Tucuman, Facultad De Medicina.

[14]  Richard D. Gill Time, Finite Statistics, and Bell's Fifth Position , 2003 .

[15]  D. Matsukevich,et al.  Bell inequality violation with two remote atomic qubits. , 2008, Physical review letters.

[16]  N. Gisin,et al.  Optical quantum random number generator , 1999, quant-ph/9907006.

[17]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[18]  D. N. Matsukevich,et al.  Protocols and techniques for a scalable atom–photon quantum network , 2009, 0906.1032.

[19]  Stefano Pironio,et al.  Convergent Relaxations of Polynomial Optimization Problems with Noncommuting Variables , 2009, SIAM J. Optim..

[20]  Tony Leggett,et al.  Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy , 1988 .

[21]  Alfred Menezes,et al.  Handbook of Applied Cryptography , 2018 .

[22]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[23]  R. G. Beausoleil,et al.  Secure self-calibrating quantum random-bit generator , 2007 .

[24]  Anindya De,et al.  Trevisan's Extractor in the Presence of Quantum Side Information , 2009, SIAM J. Comput..

[25]  Richard Gill,et al.  Bell's inequality and the coincidence-time loophole , 2003, quant-ph/0312035.

[26]  Kazuoki Azuma WEIGHTED SUMS OF CERTAIN DEPENDENT RANDOM VARIABLES , 1967 .

[27]  Constance van Eeden,et al.  Mathematical statistics and applications : festschrift for Constance van Eeden , 2003 .

[28]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[29]  G. Grimmett,et al.  Probability and random processes , 2002 .

[30]  J. F. Dynes,et al.  A high speed , postprocessing free , quantum random number generator , 2008 .

[31]  Xiongfeng Ma,et al.  Security proof of quantum key distribution with detection efficiency mismatch , 2008, Quantum Inf. Comput..

[32]  Roger Colbeck,et al.  Quantum And Relativistic Protocols For Secure Multi-Party Computation , 2009, 0911.3814.

[33]  Antony Valentini Signal-locality in hidden-variables theories , 2002 .

[34]  Frédéric Magniez,et al.  Self-testing of Quantum Circuits , 2006, ICALP.

[35]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[36]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[37]  Ali Esmaili,et al.  Probability and Random Processes , 2005, Technometrics.

[38]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[39]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[40]  Simon Kochen,et al.  The Free Will Theorem , 2006 .

[41]  A. Acín,et al.  Bounding the set of quantum correlations. , 2006, Physical review letters.

[42]  H. Weinfurter,et al.  A fast and compact quantum random number generator , 1999, quant-ph/9912118.

[43]  A. Acín,et al.  A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations , 2008, 0803.4290.

[44]  D Hayes,et al.  Heralded quantum gate between remote quantum memories. , 2009, Physical review letters.

[45]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[46]  D. Bohm A SUGGESTED INTERPRETATION OF THE QUANTUM THEORY IN TERMS OF "HIDDEN" VARIABLES. II , 1952 .

[47]  Christine Chen,et al.  Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems , 2007, 0704.3253.

[48]  Adrian Kent,et al.  No signaling and quantum key distribution. , 2004, Physical review letters.

[49]  V. Scarani,et al.  Device-independent quantum key distribution secure against collective attacks , 2009, 0903.4460.

[50]  C. Monroe,et al.  Experimental violation of a Bell's inequality with efficient detection , 2001, Nature.

[51]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[52]  J. Aron About Hidden Variables , 1969 .

[53]  A. Uchida,et al.  Fast physical random bit generation with chaotic semiconductor lasers , 2008 .

[54]  M. Horodecki,et al.  Violating Bell inequality by mixed spin- {1}/{2} states: necessary and sufficient condition , 1995 .

[55]  S. Olmschenk,et al.  Quantum Teleportation Between Distant Matter Qubits , 2009, Science.