Combinatorial Optimization Problems and Metaheuristics: Review, Challenges, Design, and Development

In the past few decades, metaheuristics have demonstrated their suitability in addressing complex problems over different domains. This success drives the scientific community towards the definition of new and better-performing heuristics and results in an increased interest in this research field. Nevertheless, new studies have been focused on developing new algorithms without providing consolidation of the existing knowledge. Furthermore, the absence of rigor and formalism to classify, design, and develop combinatorial optimization problems and metaheuristics represents a challenge to the field’s progress. This study discusses the main concepts and challenges in this area and proposes a formalism to classify, design, and code combinatorial optimization problems and metaheuristics. We believe these contributions may support the progress of the field and increase the maturity of metaheuristics as problem solvers analogous to other machine learning algorithms.

[1]  Simon Fong,et al.  Recent advances in metaheuristic algorithms: Does the Makara dragon exist? , 2016, The Journal of Supercomputing.

[2]  Jiří Dostál,et al.  Theory of Problem Solving , 2015 .

[3]  Patrick Siarry,et al.  A survey on optimization metaheuristics , 2013, Inf. Sci..

[4]  Hisao Ishibuchi,et al.  Interactive Multiobjective Optimization: A Review of the State-of-the-Art , 2018, IEEE Access.

[5]  Lai Soon Lee,et al.  Heuristics and Metaheuristics Approaches for Facility Layout Problems: A Survey , 2016 .

[6]  Diego Oliva,et al.  Fuzzy Simheuristics: Solving Optimization Problems under Stochastic and Uncertainty Scenarios , 2020, Mathematics.

[7]  Jie Ji,et al.  Application of bio-inspired algorithms in maximum power point tracking for PV systems under partial shading conditions – A review , 2018 .

[8]  Lawrence R. Rabiner,et al.  Combinatorial optimization:Algorithms and complexity , 1984 .

[9]  Antonio Martínez-Álvarez,et al.  Metaheuristic Optimisation Algorithms for Tuning a Bioinspired Retinal Model † , 2019, Sensors.

[10]  Iztok Fister,et al.  A comprehensive database of Nature-Inspired Algorithms , 2020, Data in brief.

[11]  José María Ponce-Ortega,et al.  Optimization of Process Flowsheets through Metaheuristic Techniques , 2019 .

[12]  Anupriya Gogna,et al.  Metaheuristics: review and application , 2013, J. Exp. Theor. Artif. Intell..

[13]  Anupam Shukla,et al.  A survey of nature-inspired algorithms for feature selection to identify Parkinson's disease , 2017, Comput. Methods Programs Biomed..

[14]  Mohamed Haouari,et al.  Review of optimization techniques applied for the integration of distributed generation from renewable energy sources , 2017 .

[15]  Xu Junqin,et al.  Exploration-exploitation tradeoffs in metaheuristics: Survey and analysis , 2014, Proceedings of the 33rd Chinese Control Conference.

[16]  Ender Özcan,et al.  A re-characterization of hyper-heuristics , 2018 .

[17]  Sergio Nesmachnow,et al.  An overview of metaheuristics: accurate and efficient methods for optimisation , 2014, Int. J. Metaheuristics.

[18]  K. Deb,et al.  Metaheuristic Techniques , 2016 .

[19]  Frank Neumann,et al.  Combinatorial Optimization and Computational Complexity , 2010 .

[20]  Michel Gendreau,et al.  Handbook of Metaheuristics , 2010 .

[21]  Fred W. Glover,et al.  A History of Metaheuristics , 2015, Handbook of Heuristics.

[22]  Vincent Tam,et al.  An Adaptive Multi-Population Optimization Algorithm for Global Continuous Optimization , 2021, IEEE Access.

[23]  Shi Cheng,et al.  Common Benchmark Functions for Metaheuristic Evaluation: A Review , 2017 .

[24]  Xin Yao,et al.  A Survey of Automatic Parameter Tuning Methods for Metaheuristics , 2020, IEEE Transactions on Evolutionary Computation.

[25]  Shengxiang Yang,et al.  Pareto or Non-Pareto: Bi-Criterion Evolution in Multiobjective Optimization , 2016, IEEE Transactions on Evolutionary Computation.

[26]  El-Ghazali Talbi,et al.  Metaheuristics - From Design to Implementation , 2009 .

[27]  Qingfu Zhang,et al.  A New Cooperative Framework for Parallel Trajectory-Based Metaheuristics , 2017, Appl. Soft Comput..

[28]  Bernard M. E. Moret,et al.  How to present a paper on experimental work with algorithms , 1999, SIGA.

[29]  Rainer Schlosser,et al.  Hybrid Data Layouts for Tiered HTAP Databases with Pareto-Optimal Data Placements , 2018, 2018 IEEE 34th International Conference on Data Engineering (ICDE).

[30]  P. Dhavachelvan,et al.  A survey on nature inspired meta-heuristic algorithms with its domain specifications , 2016, 2016 International Conference on Communication and Electronics Systems (ICCES).

[31]  Hossam Faris,et al.  Metaheuristic-based extreme learning machines: a review of design formulations and applications , 2018, Int. J. Mach. Learn. Cybern..

[32]  Thomas Stützle,et al.  Classification of Metaheuristics and Design of Experiments for the Analysis of Components , 2001 .

[33]  Tommaso Urli,et al.  Hybrid meta-heuristics for combinatorial optimization , 2015, Constraints.

[34]  Mauricio G. C. Resende,et al.  Designing and reporting on computational experiments with heuristic methods , 1995, J. Heuristics.

[35]  V. S. Ananthanarayana,et al.  A bio-inspired, incremental clustering algorithm for semantics-based web service discovery , 2015, Int. J. Reason. based Intell. Syst..

[36]  Markus Wagner,et al.  Metaheuristics "In the Large" , 2020, Eur. J. Oper. Res..

[37]  Thomas Bartz-Beielstein,et al.  A new Taxonomy of Continuous Global Optimization Algorithms , 2018, ArXiv.

[38]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[39]  Adam Wierzbicki,et al.  Decomposition Algorithms for a Multi-Hard Problem , 2017, Evolutionary Computation.

[40]  Andreas Antoniou,et al.  Practical Optimization: Algorithms and Engineering Applications , 2007, Texts in Computer Science.

[41]  Karl F. Doerner,et al.  Metaheuristic search techniques for multi-objective and stochastic problems: a history of the inventions of Walter J. Gutjahr in the past 22 years , 2018, Central Eur. J. Oper. Res..

[42]  Janez Brest,et al.  A comprehensive review of firefly algorithms , 2013, Swarm Evol. Comput..

[43]  Tansel Dökeroglu,et al.  A survey on new generation metaheuristic algorithms , 2019, Comput. Ind. Eng..

[44]  John R. Woodward,et al.  Metaheuristic Design Pattern: Surrogate Fitness Functions , 2015, GECCO.

[45]  BlumChristian,et al.  Hybrid metaheuristics in combinatorial optimization , 2011 .

[46]  Aleem Akhtar,et al.  Evolution of Ant Colony Optimization Algorithm - A Brief Literature Review , 2019, ArXiv.

[47]  Christian Blum,et al.  Hybrid Metaheuristics , 2010, Artificial Intelligence: Foundations, Theory, and Algorithms.

[48]  Helena Stegherr,et al.  Classifying Metaheuristics: Towards a unified multi-level classification system , 2020, Natural Computing.

[49]  Boris Almonacid AutoMH: Automatically Create Evolutionary Metaheuristic Algorithms Using Reinforced Learning , 2021 .

[50]  Adnan M. Abu-Mahfouz,et al.  A Review of Metaheuristic Techniques for Optimal Integration of Electrical Units in Distribution Networks , 2021, IEEE Access.

[51]  Marjan Mernik,et al.  Exploration and exploitation in evolutionary algorithms: A survey , 2013, CSUR.

[52]  Michael Dellnitz,et al.  A Survey of Recent Trends in Multiobjective Optimal Control—Surrogate Models, Feedback Control and Objective Reduction , 2018, Mathematical and Computational Applications.

[53]  Angel A. Juan,et al.  SIMHEURISTICS APPLICATIONS: DEALING WITH UNCERTAINTY IN LOGISTICS, TRANSPORTATION, AND OTHER SUPPLY CHAIN AREAS , 2018, 2018 Winter Simulation Conference (WSC).

[54]  Xin-She Yang,et al.  Metaheuristic Optimization , 2011, Scholarpedia.

[55]  Adam P. Piotrowski,et al.  Regarding the rankings of optimization heuristics based on artificially-constructed benchmark functions , 2015, Inf. Sci..

[56]  Ben Paechter,et al.  A Hybrid Meta-Heuristic for Multi-Objective Optimization: MOSATS , 2007, J. Math. Model. Algorithms.

[57]  Yuhui Shi,et al.  Metaheuristic research: a comprehensive survey , 2018, Artificial Intelligence Review.

[58]  Sanjay Silakari,et al.  Survey of Metaheuristic Algorithms for Combinatorial Optimization , 2012 .

[59]  S. García,et al.  Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration Versus Algorithmic Behavior, Critical Analysis Recommendations , 2020, Cognitive Computation.

[60]  Pablo San Segundo,et al.  Research trends in combinatorial optimization , 2020, Int. Trans. Oper. Res..

[61]  Marcelo Seido Nagano,et al.  Unsupervised feature selection based on bio-inspired approaches , 2020, Swarm Evol. Comput..

[62]  Arpan Kumar Kar,et al.  Swarm Intelligence: A Review of Algorithms , 2017 .

[63]  Sebastián Lozano,et al.  Metaheuristic optimization frameworks: a survey and benchmarking , 2011, Soft Computing.

[64]  Xin-She Yang,et al.  Nature-Inspired Optimization Algorithms: Challenges and Open Problems , 2020, J. Comput. Sci..

[65]  Angel A. Juan,et al.  A review of simheuristics: Extending metaheuristics to deal with stochastic combinatorial optimization problems , 2015 .

[66]  椹木 義一,et al.  Theory of multiobjective optimization , 1985 .

[67]  Kenneth Sörensen,et al.  Metaheuristics - the metaphor exposed , 2015, Int. Trans. Oper. Res..

[68]  Xin-She Yang,et al.  Bio-inspired computation: Where we stand and what's next , 2019, Swarm Evol. Comput..

[69]  Robert Pellerin,et al.  A survey of hybrid metaheuristics for the resource-constrained project scheduling problem , 2020, Eur. J. Oper. Res..

[70]  Adam Wierzbicki,et al.  Socially inspired algorithms for the travelling thief problem , 2014, GECCO.

[71]  V. Prasanna Venkatesan,et al.  A Comprehensive Study on Hybrid Meta-Heuristic Approaches Used for Solving Combinatorial Optimization Problems , 2017, 2017 World Congress on Computing and Communication Technologies (WCCCT).

[72]  Akhtar Rasool,et al.  Quadratic Assignment Problem and its Relevance to the Real World: A Survey , 2014 .

[73]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[74]  Luca Maria Gambardella,et al.  A survey on metaheuristics for stochastic combinatorial optimization , 2009, Natural Computing.

[75]  S. Bhattacharyya Hybrid Metaheuristics for Image Analysis , 2018, Springer International Publishing.

[76]  Michael Adam Lones,et al.  Mitigating Metaphors: A Comprehensible Guide to Recent Nature-Inspired Algorithms , 2019, SN Computer Science.

[77]  Kim Fung Man,et al.  Multiobjective Optimization Methodology: A Jumping Gene Approach , 2012 .

[78]  I. V. Sergienko,et al.  Problems of discrete optimization: Challenges and main approaches to solve them , 2006 .

[79]  Klervie Toczé,et al.  A Taxonomy for Management and Optimization of Multiple Resources in Edge Computing , 2018, Wirel. Commun. Mob. Comput..

[80]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[81]  Janez Brest,et al.  A Brief Review of Nature-Inspired Algorithms for Optimization , 2013, ArXiv.

[82]  Adam Wierzbicki,et al.  Multi-hard Problems in Uncertain Environment , 2016, GECCO.

[83]  P. Pardalos,et al.  Pareto optimality, game theory and equilibria , 2008 .

[84]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[85]  El-Ghazali Talbi,et al.  A Taxonomy of Hybrid Metaheuristics , 2002, J. Heuristics.

[86]  Francisco Herrera,et al.  Since CEC 2005 competition on real-parameter optimisation: a decade of research, progress and comparative analysis’s weakness , 2017, Soft Comput..

[87]  Volker Rehbock,et al.  A critical review of discrete filled function methods in solving nonlinear discrete optimization problems , 2010, Appl. Math. Comput..

[88]  Marjan Mernik,et al.  Is a comparison of results meaningful from the inexact replications of computational experiments? , 2016, Soft Comput..

[89]  Christian Blum,et al.  Hybrid Metaheuristics: An Introduction , 2008, Hybrid Metaheuristics.

[90]  Michael A. Lones,et al.  Metaheuristics in nature-inspired algorithms , 2014, GECCO.

[91]  Haitao Liu,et al.  Multi-objective metaheuristics for discrete optimization problems: A review of the state-of-the-art , 2020, Appl. Soft Comput..