Recent progress on Lattice Boltzmann simulation of nanofluids: a review

Researches on nanofluids have been quite intensive in the past decade. The performances of nanofluids have been experimentally and theoretically investigated by various researchers across the world. Among the proposed numerical methods, the lattice Boltzmann method has been shown to predict the heat transfer augmentation by nanofluids at acceptable accuracy. In this review, we summarize the recent progress of lattice Boltzmann formulation in predicting nanofluids and try to find some challenging issues that need to be solved for future research.

[1]  Gh.R. Kefayati,et al.  Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with sinusoidal temperature distribution , 2013 .

[2]  M. Mooney,et al.  The viscosity of a concentrated suspension of spherical particles , 1951 .

[3]  Takayuki Yamada,et al.  Topology optimization using the lattice Boltzmann method incorporating level set boundary expressions , 2014, J. Comput. Phys..

[4]  E. Grulke,et al.  Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow , 2005 .

[5]  Li Qiang,et al.  Application of lattice Boltzmann scheme to nanofluids , 2004 .

[6]  G. Kefayati Effect of a Magnetic Field on Natural Convection in a Nanofluid-Filled Enclosure with a Linearly Heated Wall Using LBM , 2014 .

[7]  Hamid Reza Ashorynejad,et al.  Magnetic field effects on force convection flow of a nanofluid in a channel partially filled with porous media using Lattice Boltzmann Method , 2014 .

[8]  R. Benzi,et al.  The lattice Boltzmann equation: theory and applications , 1992 .

[9]  M. Saghir,et al.  Effect of thermophoresis on natural convection in a Rayleigh–Benard cell filled with a nanofluid , 2015 .

[10]  S. Suresh,et al.  Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid , 2010 .

[11]  Liancun Zheng,et al.  MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction , 2015 .

[12]  N. Galanis,et al.  Heat transfer enhancement by using nanofluids in forced convection flows , 2005 .

[13]  Numerical study of mixed convective cooling in a square cavity ventilated and partially heated from the below utilizing nanofluid , 2010 .

[14]  Jiali Zhang,et al.  Biocompatibility of Graphene Oxide , 2010, Nanoscale research letters.

[15]  H. I. Schlaberg,et al.  Experimental and Numerical Investigation on Natural Convection Heat Transfer of TiO2–Water Nanofluids in a Square Enclosure , 2014 .

[16]  Cyrus K. Aidun,et al.  Lattice-Boltzmann Method for Complex Flows , 2010 .

[17]  D. Hänel,et al.  Lattice-BGK Model for Low Mach Number Combustion , 1998 .

[18]  Y. Xuan,et al.  Lattice Boltzmann model for nanofluids , 2004 .

[19]  Mehdi Maerefat,et al.  Modeling of heat transfer at the fluid–solid interface by lattice Boltzmann method , 2014 .

[20]  Sai Gu,et al.  Application of a high density ratio lattice-Boltzmann model for the droplet impingement on flat and spherical surfaces , 2014 .

[21]  Andreas Schneider,et al.  A viscosity adaption method for Lattice Boltzmann simulations , 2014, J. Comput. Phys..

[22]  B. Wang,et al.  A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles , 2003 .

[23]  A micro-convection model for thermal conductivity of nanofluids , 2005 .

[24]  M. Elmir,et al.  A Vertical Magneto-Convection in Square Cavity Containing A Al2O3+Water Nanofluid: Cooling of Electronic Compounds , 2012 .

[25]  R. Bhargava,et al.  Numerical solution of a thermal instability problem in a rotating nanofluid layer , 2013 .

[26]  C. Chon,et al.  Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement , 2005 .

[27]  P. Lallemand,et al.  Momentum transfer of a Boltzmann-lattice fluid with boundaries , 2001 .

[28]  C. T. Nguyen,et al.  Viscosity data for Al2O3-Water nanofluid - Hysteresis : is heat transfer enhancement using nanofluids reliable? , 2008 .

[29]  Mohsen Sheikholeslami,et al.  Lattice Boltzmann simulation of magnetohydrodynamic natural convection heat transfer of Al2O3–water nanofluid in a horizontal cylindrical enclosure with an inner triangular cylinder , 2015 .

[30]  Davood Domiri Ganji,et al.  Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method , 2015 .

[31]  H. Bruijn The viscosity of suspensions of spherical particles. (The fundamental η-c and φ relations) , 2010 .

[32]  K. Sopian,et al.  Enhancement heat transfer characteristics in the channel with Trapezoidal rib-groove using nanofluids , 2015 .

[33]  M. Farhadi,et al.  Outward melting of ice enhanced by Cu nanoparticles inside cylindrical horizontal annulus: Lattice Boltzmann approach , 2013 .

[34]  M. Farhadi,et al.  EFFECT OF WAVY WALL ON CONVECTION HEAT TRANSFER OF WATER-AL2O3 NANOFLUID IN A LID-DRIVEN CAVITY USING LATTICE BOLTZMANN METHOD , 2012 .

[35]  J. Koo,et al.  A new thermal conductivity model for nanofluids , 2004 .

[36]  H. Ashorynejad Lattice Boltzmann Simulation of Nanofluids Natural Convection Heat Transfer in Concentric Annulus , 2013 .

[37]  J. Prakash,et al.  Effects of thermal radiation parameter and magnetic field on the peristaltic motion of Williamson nanofluids in a tapered asymmetric channel , 2015 .

[38]  D. Ganji,et al.  Lattice Boltzmann Simulation of Natural Convection in an Inclined Heated Cavity Partially Using Cu/Water Nanofluid , 2012 .

[39]  Xuan Yi-min LBM Parallel Computation for Flow and Heat Transfer of Nanofluids , 2005 .

[40]  Stephen U. S. Choi,et al.  Role of Brownian motion in the enhanced thermal conductivity of nanofluids , 2004 .

[41]  A. Fakhari,et al.  Numerics of the lattice boltzmann method on nonuniform grids: Standard LBM and finite-difference LBM , 2015 .

[42]  Jinliang Xu,et al.  A lattice Boltzmann simulation of enhanced heat transfer of nanofluids , 2014 .

[43]  Wenhua Yu,et al.  The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model , 2003 .

[44]  I. Pop,et al.  Falkner–Skan problem for a static and moving wedge with prescribed surface heat flux in a nanofluid , 2011 .

[45]  M. Reggio,et al.  NATURAL CONVECTION OF NANOFLUIDS IN A SQUARE CAVITY HEATED FROM BELOW , 2013 .

[46]  Manoj Kumar Sinha,et al.  Performance evaluation of Ti–6Al–4V grinding using chip formation and coefficient of friction under the influence of nanofluids , 2015 .

[47]  G. C. Rana,et al.  On the onset of thermal convection in rotating nanofluid layer saturating a Darcy–Brinkman porous medium , 2012 .

[48]  P. Dellar Lattice Kinetic Schemes for Magnetohydrodynamics , 2002 .

[49]  Nor Azwadi Che Sidik,et al.  Lattice Boltzmann method for convective heat transfer of nanofluids – A review , 2014 .

[50]  M. Farhadi,et al.  Natural convection flow of Cu–Water nanofluid in horizontal cylindrical annuli with inner triangular cylinder using lattice Boltzmann method , 2013 .

[51]  Haibo Huang,et al.  A mass-conserving axisymmetric multiphase lattice Boltzmann method and its application in simulation of bubble rising , 2014, J. Comput. Phys..

[52]  Ravikanth S. Vajjha,et al.  Experimental and numerical investigations of nanofluids performance in a compact minichannel plate heat exchanger , 2014 .

[53]  M. Rahimian,et al.  Lattice Boltzmann model for thermal behavior of a droplet on the solid surface , 2014 .

[54]  Wei Shyy,et al.  Force evaluation in the lattice Boltzmann method involving curved geometry. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[55]  O. K. Crosser,et al.  Thermal Conductivity of Heterogeneous Two-Component Systems , 1962 .

[56]  Po-Kai Tseng,et al.  Numerical optimization of heat transfer enhancement in a wavy channel using nanofluids , 2014 .

[57]  Yulong Ding,et al.  Lattice Boltzmann simulation of alumina-water nanofluid in a square cavity , 2011, Nanoscale research letters.

[58]  C. T. Nguyen,et al.  New temperature dependent thermal conductivity data for water-based nanofluids , 2009 .

[59]  P. Lallemand,et al.  Lattice Boltzmann method for moving boundaries , 2003 .

[60]  Yue-Tzu Yang,et al.  Numerical study of microchannel heat sink performance using nanofluids , 2014 .

[61]  M. Gorji,et al.  Lattice Boltzmann Simulation of Turbulent Natural Convection in Tall Enclosures Using Cu/Water Nanofluid , 2012 .

[62]  Ahmed Omri,et al.  Lattice Boltzmann simulation of MHD natural convection in a nanofluid-filled cavity with linear temperature distribution , 2014 .

[63]  Gh.R. Kefayati,et al.  Lattice Boltzmann simulation of natural convection in nanofluid-filled 2D long enclosures at presence of magnetic field , 2012, Theoretical and Computational Fluid Dynamics.

[64]  Pierre Sagaut,et al.  Wall model for large-eddy simulation based on the lattice Boltzmann method , 2014, J. Comput. Phys..

[65]  S. Phillpot,et al.  THERMAL TRANSPORT IN NANOFLUIDS1 , 2004 .

[66]  D. Ganji,et al.  Investigation of Nanofluid Flow and Heat Transfer in Presence of Magnetic Field Using KKL Model , 2014 .

[67]  Ehsan Fattahi,et al.  Magnetic field effects on natural convection flow of nanofluid in a rectangular cavity using the Lattice Boltzmann model , 2012 .

[68]  Numerical Simulation on Buoyancy-driven Heat Transfer Enhancement of Nanofluids in an Inclined Triangular Enclosure☆ , 2014 .

[69]  Qiang Li,et al.  Multiscale simulation of flow and heat transfer of nanofluid with lattice Boltzmann method , 2010 .

[70]  Y. Xuan,et al.  Investigation on Convective Heat Transfer and Flow Features of Nanofluids , 2003 .

[71]  Hossein Hasani,et al.  Lattice Boltzmann simulation of nanofluid free convection heat transfer in an L-shaped enclosure , 2014 .

[72]  Davood Domiri Ganji,et al.  Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid , 2014 .

[73]  Somchai Wongwises,et al.  Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime , 2011 .

[74]  Zi-Xiang Tong,et al.  A unified coupling scheme between lattice Boltzmann method and finite volume method for unsteady fluid flow and heat transfer , 2015 .

[75]  K. Hwang,et al.  Particle concentration and tube size dependence of viscosities of Al2O3-water nanofluids flowing through micro- and minitubes , 2007 .

[76]  H. Sajjadi,et al.  Lattice Boltzmann simulation of natural convection in tall enclosures using water/SiO2 nanofluid , 2011 .

[77]  Rama Bhargava,et al.  Boundary and internal heat source effects on the onset of Darcy–Brinkman convection in a porous layer saturated by nanofluid , 2012 .

[78]  X. Yi FLOW AND HEAT TRANSFER SIMULATION OF NANOFLUIDS WITH LATTICE-BOLTZMANN METHOD , 2004 .

[79]  Davood Domiri Ganji,et al.  MHD free convection in an eccentric semi-annulus filled with nanofluid , 2014 .

[80]  C. Shu,et al.  An adaptive immersed boundary-lattice Boltzmann method for simulating a flapping foil in ground effect , 2015 .

[81]  M. Farhadi,et al.  Mixed convection heat transfer in a ventilated cavity with hot obstacle: Effect of nanofluid and outlet port location , 2012 .

[82]  Mehdi Bahiraei,et al.  Flow and heat transfer characteristics of magnetic nanofluids: A review , 2014 .

[83]  N. Sidik,et al.  Simulation of forced convection in a channel with nanofluid by the lattice Boltzmann method , 2013, Nanoscale Research Letters.

[84]  Davood Domiri Ganji,et al.  Numerical investigation of MHD effects on Al2O3–water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM , 2013 .

[85]  Daniel H. Rothman,et al.  Immiscible cellular-automaton fluids , 1988 .

[86]  M. Hosseini,et al.  Nanofluid in tilted cavity with partially heated walls , 2014 .

[87]  Jahar Sarkar,et al.  Numerical investigation of heat transfer and fluid flow in plate heat exchanger using nanofluids , 2014 .

[88]  Shiyi Chen,et al.  LATTICE BOLTZMANN METHOD FOR FLUID FLOWS , 2001 .

[89]  H. Sajjadi,et al.  Lattice Boltzmann simulation of natural convection in an open enclosure subjugated to water/copper nanofluid , 2012 .

[90]  H. Sajjadi,et al.  Lattice Boltzmann simulation of turbulent natural convection in a square cavity using Cu/water nanofluid , 2013 .

[91]  M. Farhadi,et al.  Lattice Boltzmann simulation of nanofluid in lid-driven cavity , 2010 .

[92]  Qiang Li,et al.  Investigation on flow and heat transfer of nanofluids by the thermal Lattice Boltzmann model , 2005 .

[93]  M. Farhadi,et al.  Lattice Boltzmann simulation of mixed convection heat transfer in a corrugated wall cavity utilizing water-based nanofluids , 2012 .

[94]  B. Shi,et al.  An extrapolation method for boundary conditions in lattice Boltzmann method , 2002 .

[95]  Mohsen Sheikholeslami,et al.  Free convection of ferrofluid in a cavity heated from below in the presence of an external magnetic field , 2014 .

[96]  Gilles Roy,et al.  Experimental investigation of nanofluids in confined laminar radial flows , 2009 .

[97]  A. Srivastava,et al.  Interferometry-based whole field investigation of heat transfer characteristics of dilute nanofluids , 2014 .

[98]  A. Mujumdar,et al.  Heat transfer characteristics of nanofluids: a review , 2007 .

[99]  Davood Domiri Ganji,et al.  Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid , 2012 .

[100]  A. Mojtabi,et al.  Numerical Simulation of Cooling a Solar Cell by Forced Convection in the Presence of a Nanofluid , 2012 .

[101]  M. Y. Ha,et al.  An immersed boundary-thermal lattice Boltzmann method using an equilibrium internal energy density approach for the simulation of flows with heat transfer , 2010, J. Comput. Phys..

[102]  M. Farhadi,et al.  Natural convection melting of NEPCM in a cavity with an obstacle using lattice Boltzmann method , 2013 .

[103]  Neil B. Morley,et al.  Progress in lattice Boltzmann methods for magnetohydrodynamic flows relevant to fusion applications , 2008 .

[104]  I. Pop,et al.  Buoyancy induced flow in a nanofluid filled enclosure partially exposed to forced convection , 2012 .

[105]  Rahmat Ellahi,et al.  Simulation of MHD CuO–water nanofluid flow and convective heat transfer considering Lorentz forces , 2014 .

[106]  B. H. Salman,et al.  Experimental investigation of heat transfer enhancement in a microtube using nanofluids , 2014 .

[107]  Young I Cho,et al.  HYDRODYNAMIC AND HEAT TRANSFER STUDY OF DISPERSED FLUIDS WITH SUBMICRON METALLIC OXIDE PARTICLES , 1998 .

[108]  S. Zaleski,et al.  Lattice Boltzmann model of immiscible fluids. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[109]  M. Mehrali,et al.  An experimental and numerical investigation of heat transfer enhancement for graphene nanoplatelets nanofluids in turbulent flow conditions , 2015 .

[110]  Mohsen Sheikholeslami,et al.  Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method , 2013 .

[111]  Ioan Pop,et al.  A heatline analysis of natural convection in a square inclined enclosure filled with a CuO nanofluid under non-uniform wall heating condition , 2012 .

[112]  F. Hormozi,et al.  Nucleate pool boiling heat transfer characteristics of dilute Al2O3–ethyleneglycol nanofluids , 2014 .

[113]  T. Inamuro,et al.  A lattice Boltzmann method for incompressible two-phase flows with large density differences , 2004 .

[114]  L. Nielsen Generalized Equation for the Elastic Moduli of Composite Materials , 1970 .

[115]  Chin Wai Lim,et al.  Numerical investigation of trapezoidal grooved microchannel heat sink using nanofluids , 2013 .

[116]  Yue-Tzu Yang,et al.  Lattice Boltzmann simulation of natural convection heat transfer of Al2O3/water nanofluids in a square enclosure , 2011 .

[117]  Arash Karimipour,et al.  Mixed convection of copper-water nanofluid in a shallow inclined lid driven cavity using the lattice Boltzmann method , 2014 .

[118]  Pietro Asinari,et al.  Lattice-Boltzmann simulations of the thermally driven 2D square cavity at high Rayleigh numbers , 2014, J. Comput. Phys..

[119]  A. Einstein Eine neue Bestimmung der Moleküldimensionen , 1905 .

[120]  M. Reggio,et al.  Natural convection of nanofluids in a shallow rectangular enclosure heated from the side , 2012 .

[121]  M. Reggio,et al.  Natural Convection of Nanofluids in a Square Enclosure with a Protruding Heater , 2012 .

[122]  Leila Jahanshaloo,et al.  A Review on the Application of the Lattice Boltzmann Method for Turbulent Flow Simulation , 2013 .

[123]  H. I. Schlaberg,et al.  Experimental and numerical study of natural convection in a square enclosure filled with nanofluid , 2014 .

[124]  Puneet Mishra,et al.  Resistive phase transition of the superconducting Si(111)-(7×3)-In surface , 2013, Nanoscale Research Letters.

[125]  P. Charunyakorn,et al.  Forced convection heat transfer in microencapsulated phase change material slurries: flow in circular ducts , 1991 .