Estimating of Bootstrap Confidence Intervals for Freight Transport Matrices

Abstract Freight transport studies require, as a preliminary step, a survey to be conducted on a sample of the universe of agents, vehicles and/or companies of the transportation system. The statistical reliability of the data determines the goodness of the outcomes and conclusions that can be inferred from the analyses and models generated. The methodology contained herein, based on bootstrapping techniques, allows us to generate the confidence intervals of origin-destination pairs defined by each cell of the matrix derived from a freight transport survey. To address this study a data set from a statistically reliable freight transport study conducted in Spain at the level of multi-province inter-regions has been used.

[1]  Alastair Scott,et al.  Quick Simultaneous Confidence Intervals for Multinomial Proportions , 1987 .

[2]  Chia-Ding Hou,et al.  A family of simultaneous confidence intervals for multinomial proportions , 2003, Comput. Stat. Data Anal..

[3]  G. W. Snedecor Statistical Methods , 1964 .

[4]  R. Cox,et al.  Journal of the Royal Statistical Society B , 1972 .

[5]  Luis M. Romero,et al.  Inferring origin–destination trip matrices from aggregate volumes on groups of links: a case study using volumes inferred from mobile phone data , 2013 .

[6]  George C. Canavos,et al.  Probabilidad y estadística: aplicaciones y métodos , 1992 .

[7]  Hai Yang,et al.  Estimation of origin-destination matrices from link traffic counts on congested networks , 1992 .

[8]  Joseph P. Romano,et al.  A Review of Bootstrap Confidence Intervals , 1988 .

[9]  M E Ben-Akiva,et al.  METHODS TO COMBINE DIFFERENT DATA SOURCES AND ESTIMATE ORIGIN-DESTINATION MATRICES , 1987 .

[10]  Joseph Glaz,et al.  Simultaneous Confidence Intervals and Sample Size Determination for Multinomial Proportions , 1995 .

[11]  R. H. Myers,et al.  Probability and Statistics for Engineers and Scientists , 1978 .

[12]  D. C. Hurst,et al.  Large Sample Simultaneous Confidence Intervals for Multinomial Proportions , 1964 .

[13]  W. D. Johnson,et al.  Properties of simultaneous confidence intervals for multinomial proportions , 1997 .

[14]  Leandro Pardo,et al.  Bootstrap confidence regions in multinomial sampling , 2004, Appl. Math. Comput..

[15]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[16]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[17]  Myoungshic Jhun,et al.  Applications of bootstrap methods for categorical data analysis , 2000 .

[18]  B. Bailey Large Sample Simultaneous Confidence Intervals for the Multinomial Probabilities Based on Transformations of the Cell Frequencies , 1980 .

[19]  Francisco G. Benitez,et al.  An approach to estimating and updating origin-destination matrices based upon traffic counts preserving the prior structure of a survey matrix , 2005 .

[20]  C. C. Craig,et al.  A First Course in Mathematical Statistics , 1947 .

[21]  Sharon L. Weinberg,et al.  Confidence regions for INDSCAL using the jackknife and bootstrap techniques , 1984 .

[22]  J. Glaz,et al.  Simultaneous confidence intervals for multinomial proportions , 1999 .

[23]  Alan Agresti,et al.  Simple and Effective Confidence Intervals for Proportions and Differences of Proportions Result from Adding Two Successes and Two Failures , 2000 .

[24]  E. Cascetta Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator , 1984 .

[25]  J. Glaz,et al.  Probability Inequalities for Multivariate Distributions with Dependence Structures , 1984 .

[26]  Ennio Cascetta,et al.  Dynamic Estimators of Origin-Destination Matrices Using Traffic Counts , 1993, Transp. Sci..

[27]  Hsiuying Wang,et al.  Exact confidence coefficients of simultaneous confidence intervals for multinomial proportions , 2008 .