An asymptotic-preserving method for highly anisotropic elliptic equations based on a Micro-Macro decomposition

The concern of the present work is the introduction of a very efficient asymptotic preserving scheme for the resolution of highly anisotropic diffusion equations. The characteristic features of this scheme are the uniform convergence with respect to the anisotropy parameter 0<e?1, the applicability (on cartesian grids) to cases of non-uniform and non-aligned anisotropy fields b and the simple extension to the case of a non-constant anisotropy intensity 1/e. The mathematical approach and the numerical scheme are different from those presented in the previous work P. Degond, F. Deluzet, A. Lozinski, J. Narski, C. Negulescu, Duality-based asymptotic-preserving method for highly anisotropic diffusion equations, Communications in Mathematical Sciences 10 (1) (2012) 1-31] and its considerable advantages are pointed out.

[1]  T. Manku,et al.  Electrical properties of silicon under nonuniform stress , 1993 .

[2]  Gregory W. Hammett,et al.  Field‐aligned coordinates for nonlinear simulations of tokamak turbulence , 1995 .

[3]  L. Garrigues,et al.  Physics, simulation and diagnostics of Hall effect thrusters , 2008 .

[4]  Michael C. Kelley,et al.  Mid-latitude ionospheric fluctuation spectra due to secondary E×B instabilities , 2004 .

[5]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[6]  Fabrice Deluzet,et al.  An Asymptotic Preserving Scheme for Strongly Anisotropic Elliptic Problems , 2009, Multiscale Model. Simul..

[7]  Timothy J. Williams,et al.  A Numerical Simulation of Groundwater Flow and Contaminant Transport on the CRAY T3D and C90 Supercomputers , 1999, Int. J. High Perform. Comput. Appl..

[8]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[9]  Fabrice Deluzet,et al.  An Asymptotic Preserving scheme for the Euler equations in a strong magnetic field , 2009, J. Comput. Phys..

[10]  Sidney L. Ossakow,et al.  Three‐dimensional nonlinear evolution of equatorial ionospheric spread‐F bubbles , 2003 .

[11]  Fabrice Deluzet,et al.  Duality-based Asymptotic-Preserving method for highly anisotropic diffusion equations , 2010, 1008.3405.

[12]  Fabrice Deluzet,et al.  Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality , 2010, J. Comput. Phys..

[13]  Patrick Amestoy,et al.  A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling , 2001, SIAM J. Matrix Anal. Appl..

[14]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[15]  Alex Guenther,et al.  Seasonal variation of biogenic VOC emissions above a mixed hardwood forest in northern Michigan , 2003 .