Lossy volume compression using Tucker truncation and thresholding

Tensor decompositions, in particular the Tucker model, are a powerful family of techniques for dimensionality reduction and are being increasingly used for compactly encoding large multidimensional arrays, images and other visual data sets. In interactive applications, volume data often needs to be decompressed and manipulated dynamically; when designing data reduction and reconstruction methods, several parameters must be taken into account, such as the achievable compression ratio, approximation error and reconstruction speed. Weighing these variables in an effective way is challenging, and here we present two main contributions to solve this issue for Tucker tensor decompositions. First, we provide algorithms to efficiently compute, store and retrieve good choices of tensor rank selection and decompression parameters in order to optimize memory usage, approximation quality and computational costs. Second, we propose a Tucker compression alternative based on coefficient thresholding and zigzag traversal, followed by logarithmic quantization on both the transformed tensor core and its factor matrices. In terms of approximation accuracy, this approach is theoretically and empirically better than the commonly used tensor rank truncation method.

[1]  Bart Vandereycken,et al.  Low-rank tensor completion by Riemannian optimization , 2014 .

[2]  Chun Chen,et al.  Wavelet-based hybrid multilinear models for multidimensional image approximation , 2008, 2008 15th IEEE International Conference on Image Processing.

[3]  Nenghai Yu,et al.  Intelligent processing techniques for semantic-based image and video retrieval , 2013, Neurocomputing.

[4]  N. Ahuja,et al.  Out-of-core tensor approximation of multi-dimensional matrices of visual data , 2005, SIGGRAPH 2005.

[5]  Yizhou Yu,et al.  Hierarchical Tensor Approximation of Multidimensional Images , 2007, 2007 IEEE International Conference on Image Processing.

[6]  Renato Pajarola,et al.  Analysis of tensor approximation for compression-domain volume visualization , 2015, Comput. Graph..

[7]  Anand Rangarajan,et al.  Image Denoising Using the Higher Order Singular Value Decomposition , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[8]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[9]  Narendra Ahuja,et al.  Rank-R approximation of tensors using image-as-matrix representation , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[10]  Ye Zhang,et al.  An optimal-truncation-based tucker decomposition method for hyperspectral image compression , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[11]  Chun Chen,et al.  Hierarchical Tensor Approximation of Multi-Dimensional Visual Data , 2008, IEEE Transactions on Visualization and Computer Graphics.

[12]  Renato Pajarola,et al.  Tensor Approximation in Visualization and Computer Graphics , 2013, Eurographics.

[13]  Renato Pajarola,et al.  Application of Tensor Approximation to Multiscale Volume Feature Representations , 2010, VMV.

[14]  Imre J. Rudas,et al.  HOSVD based image processing techniques , 2011 .

[15]  Tony F. Chan,et al.  Total variation improved wavelet thresholding in image compression , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[16]  B. Recht,et al.  Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .

[17]  Guangdong Feng,et al.  Low-n-rank tensor recovery based on multi-linear augmented Lagrange multiplier method , 2013, Neurocomputing.

[18]  Christian Olivier,et al.  Transform image coding with global thresholding: application to baseline JPEG , 2001, Proceedings XIV Brazilian Symposium on Computer Graphics and Image Processing.

[19]  Zen-Chung Shih,et al.  All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation , 2006, ACM Trans. Graph..

[20]  Zen-Chung Shih,et al.  K-clustered tensor approximation: A sparse multilinear model for real-time rendering , 2012, TOGS.

[21]  H. Andrews,et al.  Singular Value Decomposition (SVD) Image Coding , 1976, IEEE Trans. Commun..

[22]  Raf Vandebril,et al.  A New Truncation Strategy for the Higher-Order Singular Value Decomposition , 2012, SIAM J. Sci. Comput..

[23]  Alexander S. Szalay,et al.  Turbulence Visualization at the Terascale on Desktop PCs , 2012, IEEE Transactions on Visualization and Computer Graphics.

[24]  Pieter Peers,et al.  A Compact Tucker-Based Factorization Model for Heterogeneous Subsurface Scattering , 2013, TPCG.

[25]  Tamara G. Kolda,et al.  MATLAB Tensor Toolbox , 2006 .

[26]  Meenakshisundaram Gopi,et al.  Interactive Multiscale Tensor Reconstruction for Multiresolution Volume Visualization , 2011, IEEE Transactions on Visualization and Computer Graphics.

[27]  M. Alex O. Vasilescu,et al.  TensorTextures: multilinear image-based rendering , 2004, SIGGRAPH 2004.

[28]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[29]  Murat Kurt,et al.  A General BRDF Representation Based on Tensor Decomposition , 2011, Comput. Graph. Forum.

[30]  Kun Zhou,et al.  Interactive relighting with dynamic BRDFs , 2007, SIGGRAPH 2007.

[31]  J. Chang,et al.  Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition , 1970 .

[32]  Renato Pajarola,et al.  TAMRESH – Tensor Approximation Multiresolution Hierarchy for Interactive Volume Visualization , 2013, Comput. Graph. Forum.

[33]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[34]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..