Principles and Techniques of Schlieren Imaging Systems

This paper presents a review of modern-day schlieren optics system and its application. Schlieren imaging systems provide a powerful technique to visualize changes or nonuniformities in refractive index of air or other transparent media. For over two centuries, schlieren systems were typically implemented for a wide variety of non-intrusive real-time fluid dynamics studies. With the popularization of computational imaging techniques and widespread availability of digital imaging systems, schlieren systems provide novel methods of viewing transparent flow. Innovations such as background-oriented schlieren, rainbow schlieren interferometry, and synthetic schlieren imaging have built upon the fundamentals of schlieren imaging to provide less ambiguous, quantifiable studies of schlieren systems. This paper presents a historical background of the technique, describes the methodology behind the system, presents a mathematical proof of schlieren fundamentals, and lists various recent applications and advancements in schlieren studies.

[1]  Stuart B. Dalziel,et al.  Whole-field density measurements by ‘synthetic schlieren’ , 2000 .

[2]  J. Hosch,et al.  High spatial resolution schlieren photography. , 1977, Applied optics.

[3]  G. E. A. Meier,et al.  Computerized background-oriented schlieren , 2002 .

[4]  T. Davies,et al.  Schlieren photography—short bibliography and review , 1981 .

[5]  G. Settles,et al.  Natural-background-oriented schlieren imaging , 2010 .

[6]  La Foy,et al.  Adaptive synthetic Schlieren imaging , 2009 .

[7]  Mitra J. Z. Hartmann,et al.  Visualizing the invisible: the construction of three low-cost schlieren imaging systems for the undergraduate laboratory , 2008 .

[8]  G. S. Settles,et al.  Colour-coding schlieren techniques for the optical study of heat and fluid flow☆ , 1985 .

[9]  H G Taylor,et al.  Improvements in the Schlieren method , 1933 .

[10]  D G Gregory-Smith,et al.  A combined system for measurements of high-speed flow by interferometry, schlieren and shadowgraph , 1990 .

[11]  Terry R. Salyer,et al.  Noise reduction properties of a multiple-source schlieren system , 1993 .

[12]  G. Settles,et al.  Schlieren and Shadowgraph Techniques : Visualizing Phenomena in Transparent Media , 2012 .

[13]  Alfred Vogel,et al.  Sensitive high-resolution white-light Schlieren technique with a large dynamic range for the investigation of ablation dynamics. , 2006, Optics letters.

[14]  Markus Raffel,et al.  Principle and applications of the background oriented schlieren (BOS) method , 2001 .

[15]  John P. Sullivan,et al.  DESIGN NOTE: A modified schlieren technique for micro flow visualization , 2007 .

[16]  David J. Kriegman,et al.  On Refractive Optical Flow , 2004, ECCV.

[17]  Gordon Wetzstein,et al.  Hand-held Schlieren Photography with Light Field probes , 2011, 2011 IEEE International Conference on Computational Photography (ICCP).

[18]  Axel Hanenkamp,et al.  Investigation of the properties of a sharp-focusing schlieren system by means of Fourier analysis , 2006 .

[19]  S. C. Mitra,et al.  Design and fabrication of a simple schlierenscope , 1981 .

[20]  Wolfgang Heidrich,et al.  An evaluation of optical flow algorithms for background oriented schlieren imaging , 2009 .

[21]  Nobuki Kudo,et al.  A simple Schlieren system for visualizing a sound field of pulsed ultrasound , 2004 .

[22]  Stuart B. Dalziel,et al.  Visualization and measurement of internal waves by ‘synthetic schlieren’. Part 1. Vertically oscillating cylinder , 1999, Journal of Fluid Mechanics.