Star and Biclique Coloring and Choosability

A biclique of a graph G is an induced complete bipartite graph. A star of G is a biclique contained in the closed neighborhood of a vertex. A star (biclique) k-coloring of G is a k-coloring of G that contains no monochromatic maximal stars (bicliques). Similarly, for a list assignment L of G, a star (biclique) L-coloring is an L-coloring of G in which no maximal star (biclique) is monochromatic. If G admits a star (biclique) Lcoloring for every k-list assignment L, then G is said to be star (biclique) k-choosable. In this article we study the computational complexity of the star and biclique coloring and choosability problems. Specically, we prove that the star (biclique) k-coloring and k-choosability problems are p 2-complete and p 3-complete for k > 2, respectively, even when the input graph contains no induced C4 or Kk+2. Then, we study all these problems in some related classes of graphs, including H-free graphs for every H on three vertices, graphs with restricted diamonds, split graphs, and threshold graphs.

[1]  Martiniano Eguía,et al.  Hereditary biclique-Helly graphs: recognition and maximal biclique enumeration , 2011, Discret. Math. Theor. Comput. Sci..

[2]  Erich Prisner,et al.  Bicliques in Graphs I: Bounds on Their Number , 2000, Comb..

[3]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[4]  Celina M. H. de Figueiredo,et al.  Efficient Algorithms for Clique-Colouring and Biclique-Colouring Unichord-Free Graphs , 2012, Algorithmica.

[5]  Myriam Preissmann,et al.  On the NP-completeness of the k-colorability problem for triangle-free graphs , 1996, Discret. Math..

[6]  David Défossez,et al.  Complexity of clique‐coloring odd‐hole‐free graphs , 2009, J. Graph Theory.

[7]  Jérôme Amilhastre,et al.  Complexity of Minimum Biclique Cover and Minimum Biclique Decomposition for Bipartite Domino-free Graphs , 1998, Discret. Appl. Math..

[8]  Celina M. H. de Figueiredo,et al.  Biclique-colouring verification complexity and biclique-colouring power graphs , 2012, Discret. Appl. Math..

[9]  Jayme Luiz Szwarcfiter,et al.  Biclique graphs and biclique matrices , 2010, J. Graph Theory.

[10]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[11]  Zsolt Tuza,et al.  On the complexity of bicoloring clique hypergraphs of graphs (extended abstract) , 2000, SODA '00.

[12]  Martin Farber,et al.  On diameters and radii of bridged graphs , 1989, Discret. Math..

[13]  Leandro Montero,et al.  On the Iterated Biclique Operator , 2013, J. Graph Theory.

[14]  Sylvain Gravier,et al.  Coloring the Maximal Cliques of Graphs , 2004, SIAM J. Discret. Math..

[15]  Allan Lo Cliques in graphs , 2010 .

[16]  Márcia R. Cerioli,et al.  Clique-Coloring Circular-Arc Graphs , 2009, Electron. Notes Discret. Math..

[17]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[18]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[19]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[20]  Georg Gottlob,et al.  Note on the Complexity of Some Eigenvector Problems , 1995 .

[21]  David Défossez,et al.  Clique‐coloring some classes of odd‐hole‐free graphs , 2006, J. Graph Theory.

[22]  Shai Gutner,et al.  Some results on (a: b)-choosability , 2008, Discret. Math..

[23]  Bojan Mohar,et al.  The Grötzsch Theorem for the Hypergraph of Maximal Cliques , 1999, Electron. J. Comb..

[24]  Celina M. H. de Figueiredo,et al.  Biclique-colouring - Powers of Paths and Powers of Cycles , 2012, CTW.

[25]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[26]  Sylvain Gravier,et al.  Coloring the hypergraph of maximal cliques of a graph with no long path , 2003, Discret. Math..

[27]  Jayme Luiz Szwarcfiter,et al.  Biclique-Helly Graphs , 2007, Graphs Comb..

[28]  Dániel Marx,et al.  Complexity of clique coloring and related problems , 2011, Theor. Comput. Sci..

[29]  Zsolt Tuza,et al.  Covering of graphs by complete bipartite subgraphs; Complexity of 0–1 matrices , 1984, Comb..