Magnetic Trapping and Coherent Control of Laser-Cooled Molecules.

We demonstrate coherent microwave control of the rotational, hyperfine, and Zeeman states of ultracold CaF molecules, and the magnetic trapping of these molecules in a single, selectable quantum state. We trap about 5×10^{3} molecules for almost 2 s at a temperature of 70(8)  μK and a density of 1.2×10^{5}  cm^{-3}. We measure the state-specific loss rate due to collisions with background helium.

[1]  D. F. Kimball,et al.  Search for New Physics with Atoms and Molecules , 2017, 1710.01833.

[2]  A. Sushkov,et al.  Probing the frontiers of particle physics with tabletop-scale experiments , 2017, Science.

[3]  E. Hinds,et al.  A buffer gas beam source for short, intense and slow molecular pulses , 2017, 1707.06291.

[4]  H. Williams,et al.  Characteristics of a magneto-optical trap of molecules , 2017, 1706.07848.

[5]  Jun Ye,et al.  Radio Frequency Magneto-Optical Trapping of CaF with High Density. , 2017, Physical review letters.

[6]  H. Williams,et al.  Molecules cooled below the Doppler limit , 2017, Nature Physics.

[7]  N. Akerman,et al.  Trapping of Molecular Oxygen together with Lithium Atoms. , 2016, Physical review letters.

[8]  Pavle Djuricanin,et al.  Magnetic Trapping of Cold Methyl Radicals. , 2016, Physical review letters.

[9]  S. Will,et al.  Second-scale nuclear spin coherence time of ultracold 23Na40K molecules , 2016, Science.

[10]  H. Williams,et al.  An intense, cold, velocity-controlled molecular beam by frequency-chirped laser slowing , 2016, 1605.06055.

[11]  Yuqi Zhu,et al.  Improved Radio-Frequency Magneto-Optical Trap of SrF Molecules. , 2016, Chemphyschem : a European journal of chemical physics and physical chemistry.

[12]  W. Ubachs,et al.  Molecular Fountain. , 2016, Physical review letters.

[13]  S. Cornish,et al.  Controlling the Rotational and Hyperfine State of Ultracold $^{87}$Rb$^{133}$Cs Molecules , 2016, 1608.03303.

[14]  Antoine Browaeys,et al.  An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays , 2016, Science.

[15]  S. Will,et al.  Coherent Microwave Control of Ultracold ^{23}Na^{40}K Molecules. , 2016, Physical review letters.

[16]  O. Dulieu,et al.  Creation of an Ultracold Gas of Ground-State Dipolar ^{23}Na^{87}Rb Molecules. , 2016, Physical review letters.

[17]  G. Rempe,et al.  Optoelectrical Cooling of Polar Molecules to Submillikelvin Temperatures. , 2015, Physical review letters.

[18]  M. Tarbutt,et al.  Modeling magneto-optical trapping of CaF molecules , 2015, 1509.04021.

[19]  M. Tarbutt,et al.  Modeling sympathetic cooling of molecules by ultracold atoms: supporting data , 2015, 1508.03987.

[20]  S. Will,et al.  Ultracold Dipolar Gas of Fermionic 23Na40 K Molecules in Their Absolute Ground State. , 2015, Physical review letters.

[21]  EBNorrgard DJMcCarron,et al.  Improved magneto – optical trapping of a diatomic molecule , 2015 .

[22]  S. Cornish,et al.  Creation of ultracold ^{87}Rb^{133}Cs molecules in the rovibrational ground state. , 2014, Physical review letters.

[23]  H. Nägerl,et al.  Ultracold dense samples of dipolar RbCs molecules in the rovibrational and hyperfine ground state. , 2014, Physical review letters.

[24]  E. Norrgard,et al.  Magneto-optical trapping of a diatomic molecule , 2014, Nature.

[25]  S. Cahn,et al.  Zeeman-tuned rotational level-crossing spectroscopy in a diatomic free radical. , 2013, Physical review letters.

[26]  J. Doyle,et al.  Magnetic trapping of molecules via optical loading and magnetic slowing. , 2013, Physical review letters.

[27]  Jun Ye,et al.  Observation of dipolar spin-exchange interactions with lattice-confined polar molecules , 2013, Nature.

[28]  E. Hinds,et al.  Design for a fountain of YbF molecules to measure the electron's electric dipole moment , 2013, 1302.2870.

[29]  A. Avdeenkov Dipolar collisions of ultracold polar molecules in a microwave field , 2012 .

[30]  S. Alam,et al.  Prospects for laser cooling TlF , 2011, 1110.3748.

[31]  G. Meijer,et al.  Accumulation of Stark-decelerated NH molecules in a magnetic trap , 2011 .

[32]  M. Lukin,et al.  Tunable superfluidity and quantum magnetism with ultracold polar molecules. , 2011, Physical review letters.

[33]  P. Żuchowski,et al.  Large effects of electric fields on atom-molecule collisions at millikelvin temperatures. , 2011, Physical review letters.

[34]  R. Moszynski,et al.  Prospects for sympathetic cooling of molecules in electrostatic, ac and microwave traps , 2010, 1012.5029.

[35]  J. Doyle,et al.  Magnetic trapping of NH molecules with 20 s lifetimes , 2010 .

[36]  N. Cooper,et al.  Stable topological superfluid phase of ultracold polar fermionic molecules. , 2009, Physical review letters.

[37]  M. Lewenstein,et al.  The physics of dipolar bosonic quantum gases , 2009, 0905.0386.

[38]  S. Hogan,et al.  Magnetic trapping of hydrogen after multistage Zeeman deceleration. , 2008, Physical review letters.

[39]  J. Ye,et al.  A High Phase-Space-Density Gas of Polar Molecules , 2008, Science.

[40]  S. Scheel,et al.  Surface-induced heating of cold polar molecules , 2008, 0806.2913.

[41]  R. Krems Cold controlled chemistry. , 2008, Physical chemistry chemical physics : PCCP.

[42]  B. Stuhl,et al.  Magnetoelectrostatic trapping of ground state OH molecules. , 2007, Physical review letters.

[43]  P. Zoller,et al.  A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators , 2006 .

[44]  S. Yelin,et al.  Schemes for robust quantum computation with polar molecules: analysis of experimental feasibility , 2006, quant-ph/0602030.

[45]  M. Lukin,et al.  Quantum magnetism with multicomponent dipolar molecules in an optical lattice. , 2006, Physical review letters.

[46]  P. Zoller,et al.  A toolbox for lattice-spin models with polar molecules , 2005, quant-ph/0512222.

[47]  D. DeMille Quantum computation with trapped polar molecules. , 2001, Physical review letters.

[48]  E. Cornell,et al.  Simplified System for Creating a Bose–Einstein Condensate , 2000, QELS 2000.

[49]  R. Decarvalho,et al.  Magnetic trapping of calcium monohydride molecules at millikelvin temperatures , 1998, Nature.

[50]  M. Anderson,et al.  Behavior of atoms in a compressed magneto-optical trap , 1994 .

[51]  W. J. Childs,et al.  Electric‐dipole moment of CaF (X 2Σ+) by molecular beam, laser‐rf, double‐resonance study of Stark splittings , 1984 .