Hierarchical composition of the axial filament from spicules of the siliceous sponge Suberites domuncula: from biosilica-synthesizing nanofibrils to structure- and morphology-guiding triangular stems

[1]  J. Kaandorp,et al.  Genetic, Biological and Structural Hierarchies During Sponge Spicule Formation: from Soft Sol—Gels to Solid 3D Silica Composite Structures , 2012 .

[2]  J. Kaandorp,et al.  Genetic, biological and structural hierarchies during sponge spicule formation: From soft sol-gels to solid 3D silica composite structures , 2012 .

[3]  M. Wiens,et al.  Silicateins, silicatein interactors and cellular interplay in sponge skeletogenesis: formation of glass fiber‐like spicules , 2012, The FEBS journal.

[4]  Xiaohong Wang,et al.  Acquisition of Structure-guiding and Structure-forming Properties during Maturation from the Pro-silicatein to the Silicatein Form* , 2012, The Journal of Biological Chemistry.

[5]  J. Kaandorp,et al.  Interaction of the retinoic acid signaling pathway with spicule formation in the marine sponge Suberites domuncula through activation of bone morphogenetic protein-1. , 2011, Biochimica et biophysica acta.

[6]  G. Glasser,et al.  Sponge Biosilica Formation Involves Syneresis Following Polycondensation in vivo , 2011, Chembiochem : a European journal of chemical biology.

[7]  D. Pisignano,et al.  Evagination of Cells Controls Bio-Silica Formation and Maturation during Spicule Formation in Sponges , 2011, PloS one.

[8]  U. Kolb,et al.  Biosilicification of loricate choanoflagellate: organic composition of the nanotubular siliceous costal strips of Stephanoeca diplocostata , 2010, Journal of Experimental Biology.

[9]  J. Lamsdell,et al.  Cope's Rule and Romer's theory: patterns of diversity and gigantism in eurypterids and Palaeozoic vertebrates , 2010, Biology Letters.

[10]  W. Müller,et al.  Sponges (Porifera) as living metazoan witnesses from the Neoproterozoic: biomineralization and the concept of their evolutionary success , 2010 .

[11]  Xiaohong Wang,et al.  Crystalline Nanorods as Possible Templates for the Synthesis of Amorphous Biosilica during Spicule Formation in Demospongiae , 2009, Chembiochem : a European journal of chemical biology.

[12]  B. Leadbeater,et al.  Choanoflagellate lorica construction and assembly: the nudiform condition. II. Acanthoeca spectabilis Ellis. , 2008, Protist.

[13]  G. Budd The earliest fossil record of the animals and its significance , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[14]  W. Tremel,et al.  Poly(silicate)‐metabolizing silicatein in siliceous spicules and silicasomes of demosponges comprises dual enzymatic activities (silica polymerase and silica esterase) , 2008, The FEBS journal.

[15]  W. Tremel,et al.  Fractal-related assembly of the axial filament in the demosponge Suberites domuncula: relevance to biomineralization and the formation of biogenic silica. , 2007, Biomaterials.

[16]  W. Tremel,et al.  Analysis of the axial filament in spicules of the demosponge Geodia cydonium: different silicatein composition in microscleres (asters) and megascleres (oxeas and triaenes). , 2007, European journal of cell biology.

[17]  C. Dinarello,et al.  Histone deacetylase inhibitors prevent exocytosis of interleukin-1beta-containing secretory lysosomes: role of microtubules. , 2006, Blood.

[18]  W. Tremel,et al.  Co-expression and Functional Interaction of Silicatein with Galectin , 2006, Journal of Biological Chemistry.

[19]  M. Úriz Mineral skeletogenesis in sponges , 2006 .

[20]  Daniel E Morse,et al.  Fractal intermediates in the self-assembly of silicatein filaments. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  W. Tremel,et al.  Formation of siliceous spicules in the marine demosponge Suberites domuncula , 2005, Cell and Tissue Research.

[22]  W. Müller,et al.  Arginine kinase in the demosponge Suberites domuncula: regulation of its expression and catalytic activity by silicic acid , 2005, Journal of Experimental Biology.

[23]  W. Tremel,et al.  Monitoring the formation of biosilica catalysed by histidine-tagged silicatein. , 2004, Chemical communications.

[24]  M. Torrisi,et al.  Phospholipases C and A2 control lysosome-mediated IL-1 beta secretion: Implications for inflammatory processes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Xavier Turon,et al.  Siliceous spicules and skeleton frameworks in sponges: Origin, diversity, ultrastructural patterns, and biological functions , 2003, Microscopy research and technique.

[26]  H. Amenitsch,et al.  Fiber diffraction study of spicules from marine sponges , 2003, Microscopy research and technique.

[27]  F. Brümmer,et al.  Cultivation of primmorphs from the marine sponge Suberites domuncula: morphogenetic potential of silicon and iron. , 2003, Journal of biotechnology.

[28]  E. Hajdu,et al.  In vivo study of microsclere formation in sponges of the genus Mycale (Demospongiae, Poecilosclerida) , 2002, Zoomorphology.

[29]  H. Schröder,et al.  Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. , 2000, European journal of biochemistry.

[30]  M. Torrisi,et al.  The secretory route of the leaderless protein interleukin 1beta involves exocytosis of endolysosome-related vesicles. , 1999, Molecular biology of the cell.

[31]  W. Müller Establishment of a primary cell culture from a sponge: primmorphs from Suberites domuncula , 1999 .

[32]  G. Stucky,et al.  Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[33]  G. Stucky,et al.  Silicatein α: Cathepsin L-like protein in sponge biosilica , 1998 .

[34]  R. Borojevic,et al.  Formation of spicules by sclerocytes from the freshwater spongeEphydatia muelleri in short-term cultures in vitro , 1995, In Vitro Cellular & Developmental Biology - Animal.

[35]  M. von Zastrow,et al.  Protein sorting among two distinct export pathways occurs from the content of maturing exocrine storage granules , 1987, The Journal of cell biology.

[36]  J. Clegg L‐929 cells under hyperosmotic conditions: Volume changes , 1986, Journal of cellular physiology.

[37]  F. Padula,et al.  Evagination of smooth muscle cells in the hypoxic pulmonary trunk. , 1978, Thorax.

[38]  A. Gierer Physical aspects of tissue evagination and biological form , 1977, Quarterly Reviews of Biophysics.

[39]  C. Dinarello,et al.  -containing secretory lysosomes: role of microtubules β Histone deacetylase inhibitors prevent exocytosis of interleukin-1 , 2013 .

[40]  W. Müller,et al.  Giant siliceous spicules from the deep-sea glass sponge Monorhaphis chuni. , 2009, International review of cell and molecular biology.

[41]  H. Amenitsch,et al.  A mesoporous pattern created by nature in spicules from Thetya aurantium sponge. , 2007, Biophysical journal.

[42]  H. Amenitsch,et al.  Structural characterization of siliceous spicules from marine sponges. , 2004, Biophysical journal.

[43]  Teresa Adell,et al.  Bauplan of urmetazoa: basis for genetic complexity of metazoa. , 2004, International review of cytology.

[44]  G. Stucky,et al.  Silicatein alpha: cathepsin L-like protein in sponge biosilica. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Elias Metschnikoff Leçons sur la pathologie comparée de l'inflammation , 1893 .

[46]  I. Mechnikov Leçons sur la pathologie comparée de l'inflammation : faites à l'Institut Pasteur en Avril et Mai 1891 , 1892 .