Lower bounds for algebraic computation trees

A topological method is given for obtaining lower bounds for the height of algebraic computation trees, and algebraic decision trees. Using this method we are able to generalize, and present in a uniform and easy way, almost all the known nonlinear lower bounds for algebraic computations. Applying the method to decision trees we extend all the apparently known lower bounds for linear decision trees to bounded degree algebraic decision trees, thus answering the open questions raised by Steele and Yao [20]. We also show how this new method can be used to establish lower bounds on the complexity of constructions with ruler and compass in plane Euclidean geometry.

[1]  E. L. The Foundations of Geometry , 1891, Nature.

[2]  J. Milnor On the Betti numbers of real varieties , 1964 .

[3]  J. Milnor Singular points of complex hypersurfaces , 1968 .

[4]  Edward M. Reingold,et al.  On the Optimality of Some Set Algorithms , 1972, JACM.

[5]  Michael O. Rabin,et al.  Proving Simultaneous Positivity of Linear Forms , 1972, J. Comput. Syst. Sci..

[6]  V. Strassen Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten , 1973 .

[7]  Andrew Chi-Chih Yao,et al.  On the complexity of comparison problems using linear functions , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[8]  Richard J. Lipton,et al.  On the Complexity of Computations under Varying Sets of Primitives , 1975, J. Comput. Syst. Sci..

[9]  M. Shamos Problems in computational geometry , 1975 .

[10]  Allan Borodin,et al.  The computational complexity of algebraic and numeric problems , 1975, Elsevier computer science library.

[11]  Michael Ian Shamos,et al.  Geometric complexity , 1975, STOC.

[12]  David P. Dobkin A Nonlinear Lower Bound on Linear Search Tree Programs for Solving Knapsack Problems , 1976, J. Comput. Syst. Sci..

[13]  Richard J. Lipton,et al.  A Lower Bound of ½n² on Linear Search Programs for the Knapsack Problem , 1976, MFCS.

[14]  DAVID DOBKIN,et al.  A Lower Bound of the ½n² on Linear Search Programs for the Knapsack Problem , 1978, J. Comput. Syst. Sci..

[15]  Bruce W. Weide,et al.  On the complexity of computing the measure of ∪[ai,bi] , 1978, CACM.

[16]  Andrew Chi-Chih Yao,et al.  On the Polyhedral Decision Problem , 1980, SIAM J. Comput..

[17]  Jerzy W. Jaromczyk,et al.  Lower Bounds for Problems Defined by Polynomial Inequalities , 1981, FCT.

[18]  Claus-Peter Schnorr,et al.  An Extension of Strassen's Degree Bound , 1981, SIAM J. Comput..

[19]  Jerzy W. Jaromczyk,et al.  An Extension of Rabin's Complete Proof Concept , 1981, International Symposium on Mathematical Foundations of Computer Science.

[20]  Volker Strassen,et al.  The computational complexity of continued fractions , 1981, SYMSAC '81.

[21]  Andrew Chi-Chih Yao,et al.  A Lower Bound to Finding Convex Hulls , 1981, JACM.

[22]  Alfred Schmitt,et al.  On the Computational Power of the Floor Function , 1982, Inf. Process. Lett..

[23]  J. Michael Steele,et al.  Lower Bounds for Algebraic Decision Trees , 1982, J. Algorithms.