Controlled deformation of Si3N4 nanopores using focused electron beam in a transmission electron microscope

The controllable deformation of nanopores was realized by moving a convergent electron beam in a high-resolution transmission electron microscope. Nanostructures with the desired geometries were successfully fabricated from the original nanopores in 100 nm-thick and 260 nm-thick Si3N4 membranes. The formation dynamics is a competition process between the knock-on effect of the high-energy electron beam and surface tension driven shrinkage. This approach can be used to finely tune critical dimensions and deform nanopores to particular desired geometries with single-nanometer precision, which offers substantial opportunities in flexibly fabricating nanostructures for various applications such as nanoelectronics and nanofluidics.

[1]  N. Dekker,et al.  Direct force measurements on double-stranded RNA in solid-state nanopores. , 2010, Nano letters.

[2]  C. Dekker,et al.  Translocation of RecA-coated double-stranded DNA through solid-state nanopores. , 2009, Nano letters.

[3]  A. Vulpiani,et al.  A statistical model for translocation of structured polypeptide chains through nanopores. , 2009, The journal of physical chemistry. B.

[4]  A. Meller,et al.  DNA profiling using solid-state nanopores: detection of DNA-binding molecules. , 2009, Nano letters.

[5]  T. W. Kim,et al.  Irradiation-induced shrinkage and expansion mechanisms of SiO2 circle membrane nanopores , 2009, Nanotechnology.

[6]  Meni Wanunu,et al.  Electromechanical unzipping of individual DNA molecules using synthetic sub-2 nm pores. , 2008, Nano letters.

[7]  M. Drndić,et al.  Electron beam nanosculpting of suspended graphene sheets , 2008, 0808.2974.

[8]  Marc Gershow,et al.  Recapturing and trapping single molecules with a solid-state nanopore. , 2007, Nature nanotechnology.

[9]  Min Jun Kim,et al.  Characteristics of solid-state nanometre pores fabricated using a transmission electron microscope , 2007 .

[10]  H. Ye,et al.  Fabrication of ultrafine nanostructures with single-nanometre precision in a high-resolution transmission electron microscope , 2007 .

[11]  Marija Drndic,et al.  Sub-10 nm device fabrication in a transmission electron microscope. , 2007, Nano letters.

[12]  Q. Ouyang,et al.  Controllable shrinking and shaping of silicon nitride nanopores under electron irradiation , 2007 .

[13]  Michael Zwolak,et al.  Fast DNA sequencing via transverse electronic transport. , 2006, Nano letters.

[14]  H. W. Zandbergen,et al.  Electron-beam-induced deformations of SiO2 nanostructures , 2005 .

[15]  M. W. Cole,et al.  Possible one-dimensional 3He quantum fluid formed in nanopores. , 2005, Physical review letters.

[16]  M. Di Ventra,et al.  Electronic signature of DNA nucleotides via transverse transport. , 2004, Nano letters.

[17]  A. Meller,et al.  Nanopore unzipping of individual DNA hairpin molecules. , 2004, Biophysical journal.

[18]  Marc Gershow,et al.  DNA molecules and configurations in a solid-state nanopore microscope , 2003, Nature materials.

[19]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[20]  Z. Siwy,et al.  Fabrication of a synthetic nanopore ion pump. , 2002, Physical review letters.

[21]  Michael J. Aziz,et al.  Ion-beam sculpting at nanometre length scales , 2001, Nature.

[22]  Henry I. Smith,et al.  He-atom diffraction from nanostructure transmission gratings: The role of imperfections , 2000 .

[23]  C. Dekker,et al.  Control of shape and material composition of solid-state nanopores. , 2009, Nano letters.