Hedging under generalized good-deal bounds and model uncertainty

We study a notion of good-deal hedging, that corresponds to good-deal valuation and is described by a uniform supermartingale property for the tracking errors of hedging strategies. For generalized good-deal constraints, defined in terms of correspondences for the Girsanov kernels of pricing measures, constructive results on good-deal hedges and valuations are derived from backward stochastic differential equations, including new examples with explicit formulas. Under model uncertainty about the market prices of risk of hedging assets, a robust approach leads to a reduction or even elimination of a speculative component in good-deal hedging, which is shown to be equivalent to a global risk minimization in the sense of Föllmer and Sondermann (1986) if uncertainty is sufficiently large.

[1]  I. Ekeland,et al.  Convex analysis and variational problems , 1976 .

[2]  Naroa Marroquín-Martínez,et al.  Optimizing bounds on security prices in incomplete markets. Does stochastic volatility specification matter? , 2013, Eur. J. Oper. Res..

[3]  Patrick Cheridito,et al.  Recursiveness of indifference prices and translation-invariant preferences , 2009 .

[4]  Nina Boyarchenko,et al.  No Good Deals — No Bad Models , 2014 .

[5]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[6]  Frank Thomas Seifried,et al.  Optimal Investment for Worst-Case Crash Scenarios: A Martingale Approach , 2010, Math. Oper. Res..

[7]  Łukasz Delong No-Good-Deal, Local Mean-Variance and Ambiguity Risk Pricing and Hedging for an Insurance Payment Process , 2012, ASTIN Bulletin.

[8]  Pricing and hedging basis risk under no good deal assumption , 2014 .

[9]  I. Gilboa,et al.  Maxmin Expected Utility with Non-Unique Prior , 1989 .

[10]  E. Bayraktar,et al.  Pricing options in incomplete equity markets via the instantaneous Sharpe ratio , 2007, math/0701650.

[11]  Kim C. Border,et al.  Infinite Dimensional Analysis: A Hitchhiker’s Guide , 1994 .

[12]  Michael Kupper,et al.  Risk Preferences and their Robust Representation , 2010, Math. Oper. Res..

[13]  Dirk Becherer,et al.  Multilevel approximation of backward stochastic differential equations , 2014, 1412.3140.

[14]  Martin Schweizer,et al.  Dynamic utility-based good deal bounds , 2007 .

[15]  A. Cern Generalized Sharpe Ratios and Asset Pricing in Incomplete Markets , 2002 .

[16]  C. Dellacherie,et al.  Probabilities and Potential B: Theory of Martingales , 2012 .

[17]  S. Peng,et al.  Filtration-consistent nonlinear expectations and related g-expectations , 2002 .

[18]  N. El Karoui,et al.  Pricing, Hedging and Optimally Designing Derivatives via Minimization of Risk Measures , 2007, 0708.0948.

[19]  S. Aly Modélisation de la courbe de variance et modeles à volatilité stochastique , 2011 .

[20]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[21]  P. Mahalanobis On the generalized distance in statistics , 1936 .

[22]  S. Peng,et al.  Backward Stochastic Differential Equations in Finance , 1997 .

[23]  M. Schweizer A guided tour through quadratic hedging approaches , 1999 .

[24]  Oleg Bondarenko,et al.  A general framework for the derivation of asset price bounds: an application to stochastic volatility option models , 2009 .

[25]  R. Rockafellar,et al.  Integral functionals, normal integrands and measurable selections , 1976 .

[26]  F. Delbaen,et al.  A general version of the fundamental theorem of asset pricing , 1994 .

[27]  Uwe Küchler,et al.  Coherent risk measures and good-deal bounds , 2001, Finance Stochastics.

[28]  R. Poulsen,et al.  Risk minimization in stochastic volatility models: model risk and empirical performance , 2007 .

[29]  D. Sondermann Hedging of non-redundant contingent claims , 1985 .

[30]  M. Yor,et al.  Equivalent and absolutely continuous measure changes for jump-diffusion processes , 2005, math/0508450.

[31]  Emmanuel Gobet,et al.  Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions , 2015, Math. Comput..

[32]  David Heath,et al.  Coherent multiperiod risk adjusted values and Bellman’s principle , 2007, Ann. Oper. Res..

[33]  Jocelyne Bion-Nadal,et al.  Dynamic no-good-deal pricing measures and extension theorems for linear operators on L∞ , 2013, Finance Stochastics.

[34]  Aleš Černý,et al.  The Theory of Good-Deal Pricing in Financial Markets , 1998 .

[35]  Lorenzo Garlappi,et al.  Portfolio Selection with Parameter and Model Uncertainty: A Multi-Prior Approach , 2004 .

[36]  Good-Deal Bounds in a Regime-Switching Diffusion Market , 2010, 1006.2273.

[37]  D. Heath,et al.  A Comparison of Two Quadratic Approaches to Hedging in Incomplete Markets , 2001 .

[38]  Leitner Johannes Pricing and hedging with globally and instantaneously vanishing risk , 2007 .

[39]  Susanne Klöppel,et al.  DYNAMIC INDIFFERENCE VALUATION VIA CONVEX RISK MEASURES , 2007 .

[40]  From bounds on optimal growth towards a theory of good-deal hedging , 2009 .

[41]  F. Delbaen The Structure of m–Stable Sets and in Particular of the Set of Risk Neutral Measures , 2006 .

[42]  Sara Biagini,et al.  The robust Merton problem of an ambiguity averse investor , 2015 .

[43]  Martin Schneider,et al.  Recursive multiple-priors , 2003, J. Econ. Theory.

[44]  T. Björk,et al.  Towards a General Theory of Good Deal Bounds , 2006 .

[45]  Abraham Lioui,et al.  The Minimum Variance Hedge Ratio Under Stochastic Interest Rates , 2000 .

[46]  M. Quenez Optimal Portfolio in a Multiple-Priors Model , 2004 .

[47]  S. Peng,et al.  Adapted solution of a backward stochastic differential equation , 1990 .

[48]  Larry G. Epstein,et al.  Ambiguity, risk, and asset returns in continuous time , 2000 .

[49]  Alexander Schied,et al.  Robust optimal control for a consumption-investment problem , 2008, Math. Methods Oper. Res..

[50]  T. Sargent,et al.  Robust Control and Model Uncertainty , 2001 .

[51]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[52]  Yu. N. Kiseliov Algorithms of projection of a point onto an ellipsoid , 1994 .

[53]  Samuel Drapeau,et al.  Minimal Supersolutions of Convex BSDEs , 2011 .

[54]  N. Karoui,et al.  Dynamic Programming and Pricing of Contingent Claims in an Incomplete Market , 1995 .

[55]  S. Werlang,et al.  Uncertainty Aversion, Risk Aversion, and the Optimal Choice of Portfolio , 1992 .

[56]  J. Cochrane,et al.  Beyond Arbitrage: 'Good Deal' Asset Price Bounds in Incomplete Markets , 1996 .

[57]  Rama Cont Model Uncertainty and its Impact on the Pricing of Derivative Instruments , 2004 .