The construction of some important classes of generalized coherent states: the nonlinear coherent states method

Considering some important classes of generalized coherent states known in the literature, we demonstrated that all of them can be created via conventional methods, i.e. the 'lowering operator eigenstate' and the 'displacement operator' techniques using the 'nonlinear coherent states' approach. As a result we obtained a 'unified method' to construct a large class of coherent states which have already been introduced by different prescriptions.

[1]  M. Tavassoly,et al.  Representations of Coherent and Squeezed States in a f-deformed Fock Space , 2004, math-ph/0405045.

[2]  H. Fakhri su(1, 1)-Barut Girardello coherent states for Landau levels , 2004 .

[3]  M. H. Naderi,et al.  New photon-added and photon-depleted coherent states associated with inverseq-boson operators: nonclassical properties , 2004 .

[4]  M. Tavassoly,et al.  Representations of coherent states in non-orthogonal bases , 2003, quant-ph/0310147.

[5]  D. Popov Gazeau–Klauder quasi-coherent states for the Morse oscillator , 2003 .

[6]  J. Camier,et al.  Construction of even and odd combinations of Morse-like coherent states , 2003 .

[7]  A. Kinani,et al.  COHERENT AND GENERALIZED INTELLIGENT STATES FOR INFINITE SQUARE WELL POTENTIAL AND NONLINEAR OSCILLATORS , 2002, quant-ph/0312122.

[8]  J. Gazeau,et al.  Exact trace formulas for two-dimensional electron magnetism , 2002 .

[9]  A. Kinani,et al.  GENERALIZED INTELLIGENT STATES FOR NONLINEAR OSCILLATORS , 2001, quant-ph/0312121.

[10]  Karol A. Penson,et al.  Constructing coherent states through solutions of Stieltjes and Hausdorff moment problems , 2001 .

[11]  J. Klauder,et al.  Temporally stable coherent states for infinite well and Poschl-Teller potentials , 2000, math-ph/0012044.

[12]  S. Sivakumar Studies on nonlinear coherent states , 2000 .

[13]  Ling-An Wu,et al.  Superpositions of negative binomial states , 2000 .

[14]  P. Roy,et al.  New nonlinear coherent states and some of their nonclassical properties , 2000 .

[15]  A. I. Solomon,et al.  MITTAG-LEFFLER COHERENT STATES , 1999 .

[16]  H. Fu,et al.  Statistical properties and algebraic characteristics of quantum superpositions of negative binomial states , 1999, quant-ph/9910098.

[17]  Karol A. Penson,et al.  New generalized coherent states , 1999 .

[18]  J. Klauder,et al.  Coherent states for systems with discrete and continuous spectrum , 1999 .

[19]  J. Klauder Coherent States for Discrete Spectrum Dynamics , 1998, quant-ph/9810044.

[20]  S. Sivakumar Photon-added coherent states as nonlinear coherent states , 1998, quant-ph/9806061.

[21]  Anatol Odzijewicz,et al.  {Quantum Algebras and q-Special Functions Related to Coherent States Maps of the Disc , 1998 .

[22]  E. Sudarshan,et al.  f-oscillators and nonlinear coherent states , 1996, quant-ph/9612006.

[23]  A. Speliotopoulos The general structure of eigenvalues in nonlinear oscillators , 1996, physics/9611006.

[24]  Vogel,et al.  Nonlinear coherent states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[25]  S. Chaturvedi,et al.  Unified approach to the analogues of single-photon and multiphoton coherent states for generalized bosonic oscillators , 1994 .

[26]  V. Hussin,et al.  Coherent states for isospectral oscillator Hamiltonians , 1994 .

[27]  Agarwal,et al.  Unified approach to multiphoton coherent states. , 1994, Physical review letters.

[28]  E. Sudarshan,et al.  Diagonal harmonious state representations , 1993 .

[29]  Perry,et al.  Lowest-order mass corrections for a (1+1)-dimensional Yukawa model in light-front perturbation theory. , 1991, Physical review. D, Particles and fields.

[30]  G. Agarwal,et al.  Nonclassical properties of states generated by the excitations on a coherent state , 1991 .

[31]  Buzek Jaynes-Cummings model with intensity-dependent coupling interacting with Holstein-Primakoff SU(1,1) coherent state. , 1989, Physical review. A, General physics.

[32]  J. Klauder,et al.  COHERENT STATES: APPLICATIONS IN PHYSICS AND MATHEMATICAL PHYSICS , 1985 .

[33]  R. Askey,et al.  HANDBOOK OF INTEGRAL TRANSFORMS OF HIGHER TRANSCENDENTAL FUNCTIONS: Theory and Algorithmic Tables (Ellis Horwood Series: Mathematics and Its Applications) , 1983 .

[34]  C. Gerry Generalised coherent states and group representations on Hilbert spaces of analytic functions , 1983 .

[35]  O. I. Marichev,et al.  Handbook of Integral Transforms of Higher Transcendental Functions , 1983 .

[36]  Edward Witten,et al.  Dynamical Breaking of Supersymmetry , 1981 .

[37]  R. Gilmore GEOMETRY OF SYMMETRIZED STATES. , 1972 .

[38]  A. Perelomov Coherent states for arbitrary Lie group , 1972 .

[39]  A. O. Barut,et al.  New “Coherent” States associated with non-compact groups , 1971 .

[40]  E. M. Lifshitz,et al.  Quantum mechanics: Non-relativistic theory, , 1959 .

[41]  G. Watson Bessel Functions. (Scientific Books: A Treatise on the Theory of Bessel Functions) , 1923 .