Fusing numerical relativity and deep learning to detect higher-order multipole waveforms from eccentric binary black hole mergers

We determine the mass-ratio, eccentricity and binary inclination angles that maximize the contribution of the higher-order waveform multipoles $(\ell, \, |m|)= \{(2,\,2),\, (2,\,1),\, (3,\,3),\, (3,\,2), \, (3,\,1),\, (4,\,4),\, (4,\,3),\, (4,\,2),\,(4,\,1)\}$ for the gravitational wave detection of eccentric binary black hole mergers. We carry out this study using numerical relativity waveforms that describe non-spinning black hole binaries with mass-ratios $1\leq q \leq 10$, and orbital eccentricities as high as $e_0=0.18$ fifteen cycles before merger. For stellar-mass, asymmetric mass-ratio, binary black hole mergers, and assuming LIGO's Zero Detuned High Power configuration, we find that in regions of parameter space where black hole mergers modeled with $\ell=|m|=2$ waveforms have vanishing signal-to-noise ratios, the inclusion of $(\ell, \, |m|)$ modes enables the observation of these sources with signal-to-noise ratios that range between 30\% to 45\% the signal-to-noise ratio of optimally oriented binary black hole mergers modeled with $\ell=|m|=2$ numerical relativity waveforms. Having determined the parameter space where $(\ell, \, |m|)$ modes are important for gravitational wave detection, we construct waveform signals that describe these astrophysically motivate scenarios, and demonstrate that these topologically complex signals can be detected and characterized in real LIGO noise with deep learning algorithms.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  Ken-ichi Oohara,et al.  General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes , 1987 .

[3]  Physical Review Letters 63 , 1989 .

[4]  Nakamura,et al.  Evolution of three-dimensional gravitational waves: Harmonic slicing case. , 1995, Physical review. D, Particles and fields.

[5]  S. Shapiro,et al.  On the numerical integration of Einstein's field equations , 1998, gr-qc/9810065.

[6]  Lee Samuel Finn Aperture synthesis for gravitational-wave data analysis: Deterministic sources , 2001 .

[7]  Jonathan Thornburg,et al.  A Fast Apparent‐Horizon Finder for 3‐Dimensional Cartesian Grids in Numerical Relativity , 2003, gr-qc/0306056.

[8]  Marcus Ansorg,et al.  Single-domain spectral method for black hole puncture data , 2004 .

[9]  Curt Cutler,et al.  LISA capture sources: Approximate waveforms, signal-to-noise ratios, and parameter estimation accuracy , 2003, gr-qc/0310125.

[10]  Scott H. Hawley,et al.  Evolutions in 3D numerical relativity using fixed mesh refinement , 2003, gr-qc/0310042.

[11]  L. Blanchet Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2006, Living reviews in relativity.

[12]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[13]  Robert B. Ross,et al.  High-Performance Parallel I/O , 2006, PVM/MPI.

[14]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2006, Physical review letters.

[15]  Spinning-black-hole binaries: The orbital hang-up , 2006, gr-qc/0604012.

[16]  Erik Schnetter,et al.  Optimized High-Order Derivative and Dissipation Operators Satisfying Summation by Parts, and Applications in Three-dimensional Multi-block Evolutions , 2005, J. Sci. Comput..

[17]  K. Arun,et al.  Post-circular expansion of eccentric binary inspirals: Fourier-domain waveforms in the stationary phase approximation , 2009, 0906.0313.

[18]  Frank Herrmann,et al.  Comparisons of eccentric binary black hole simulations with post-Newtonian models , 2008, 0806.1037.

[19]  C. Stivers Class , 2010 .

[20]  Erik Schnetter,et al.  High accuracy binary black hole simulations with an extended wave zone , 2009, 0910.3803.

[21]  Erin Kara,et al.  TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE , 2011, 1107.2665.

[22]  S. McWilliams,et al.  Inspiral of generic black hole binaries: spin, precession and eccentricity , 2010, 1009.2533.

[23]  C. Ott,et al.  The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics , 2011, 1111.3344.

[24]  Bernard F. Schutz,et al.  Networks of gravitational wave detectors and three figures of merit , 2011, 1102.5421.

[25]  H. Perets,et al.  SECULAR EVOLUTION OF COMPACT BINARIES NEAR MASSIVE BLACK HOLES: GRAVITATIONAL WAVE SOURCES AND OTHER EXOTICA , 2012, 1203.2938.

[26]  W. Marsden I and J , 2012 .

[27]  Laura Chomiuk,et al.  Two stellar-mass black holes in the globular cluster M22 , 2012, Nature.

[28]  Enrico Ramirez-Ruiz,et al.  THE FORMATION OF ECCENTRIC COMPACT BINARY INSPIRALS AND THE ROLE OF GRAVITATIONAL WAVE EMISSION IN BINARY–SINGLE STELLAR ENCOUNTERS , 2013, 1308.2964.

[29]  Duncan A. Brown,et al.  Template banks to search for low-mass binary black holes in advanced gravitational-wave detectors , 2012, 1211.6184.

[30]  L. Pekowsky,et al.  Impact of higher-order modes on the detection of binary black hole coalescences , 2012, 1210.1891.

[31]  E. A. Huerta,et al.  Effect of eccentricity on binary neutron star searches in advanced LIGO , 2013, 1301.1895.

[32]  F. Antonini ON THE DISTRIBUTION OF STELLAR REMNANTS AROUND MASSIVE BLACK HOLES: SLOW MASS SEGREGATION, STAR CLUSTER INSPIRALS, AND CORRELATED ORBITS , 2014, 1402.4865.

[33]  F. Pretorius,et al.  Parametrized post-Einsteinian framework for gravitational wave bursts , 2014, 1404.0092.

[34]  A. Buonanno,et al.  Impact of higher harmonics in searching for gravitational waves from nonspinning binary black holes , 2013, 1311.1286.

[35]  Norman Murray,et al.  BLACK HOLE TRIPLE DYNAMICS: A BREAKDOWN OF THE ORBIT AVERAGE APPROXIMATION AND IMPLICATIONS FOR GRAVITATIONAL WAVE DETECTIONS , 2013, 1308.3674.

[36]  Richard O'Shaughnessy,et al.  Accurate and efficient waveforms for compact binaries on eccentric orbits , 2014, 1408.3406.

[37]  Scott E. Field,et al.  Fast and accurate prediction of numerical relativity waveforms from binary black hole mergers using surrogate models , 2015, Physical review letters.

[38]  M. S. Shahriar,et al.  Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.

[39]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[40]  Vicky Kalogera,et al.  BLACK HOLE MERGERS AND BLUE STRAGGLERS FROM HIERARCHICAL TRIPLES FORMED IN GLOBULAR CLUSTERS , 2015, 1509.05080.

[41]  J. Powell,et al.  Classification methods for noise transients in advanced gravitational-wave detectors II: performance tests on Advanced LIGO data , 2016, 1609.06262.

[42]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[43]  A. Sintes,et al.  Impact of gravitational radiation higher order modes on single aligned-spin gravitational wave searches for binary black holes , 2015, 1511.02060.

[44]  E. Berti,et al.  Spectroscopy of Kerr Black Holes with Earth- and Space-Based Interferometers. , 2016, Physical review letters.

[45]  Marco Drago,et al.  Proposed search for the detection of gravitational waves from eccentric binary black holes , 2015, 1511.09240.

[46]  Matthew West,et al.  The PyCBC search for gravitational waves from compact binary coalescence , 2015, 1508.02357.

[47]  L. Stein,et al.  Black hole based tests of general relativity , 2016, 1602.02413.

[48]  N. Yunes,et al.  Hereditary effects in eccentric compact binary inspirals to third post-Newtonian order , 2016, 1607.05409.

[49]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[50]  G. Mitselmakher,et al.  Method for detection and reconstruction of gravitational wave transients with networks of advanced detectors , 2015, 1511.05999.

[51]  D Huet,et al.  GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. , 2016, Physical review letters.

[52]  C. Evans,et al.  Highly eccentric inspirals into a black hole , 2015, 1511.01498.

[53]  B. A. Boom,et al.  GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence , 2017, 1711.05578.

[54]  P. Ajith,et al.  Effects of nonquadrupole modes in the detection and parameter estimation of black hole binaries with nonprecessing spins , 2016, 1612.05608.

[55]  Enrico Ramirez-Ruiz,et al.  On the Assembly Rate of Highly Eccentric Binary Black Hole Mergers , 2017, 1703.09703.

[56]  Tanja Hinderer,et al.  Foundations of an effective-one-body model for coalescing binaries on eccentric orbits , 2017, 1707.08426.

[57]  Mirek Giersz,et al.  MOCCA-SURVEY Database. I. Eccentric Black Hole Mergers during Binary–Single Interactions in Globular Clusters , 2017, 1712.06186.

[58]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[59]  Daniel George,et al.  Deep Neural Networks to Enable Real-time Multimessenger Astrophysics , 2016, ArXiv.

[60]  Wen-Biao Han,et al.  Waveform model for an eccentric binary black hole based on the effective-one-body-numerical-relativity formalism , 2017, 1708.00166.

[61]  E. A. Huerta,et al.  Python Open source Waveform ExtractoR (POWER): an open source, Python package to monitor and post-process numerical relativity simulations , 2017, ArXiv.

[62]  Texas Tech University,et al.  Multi-messenger observations of a binary neutron star merger , 2017 .

[63]  Jeffrey S. Vetter,et al.  Contemporary High Performance Computing , 2017 .

[64]  N. Yunes,et al.  Eccentric gravitational wave bursts in the post-Newtonian formalism , 2017, 1702.01818.

[65]  Lawrence E. Kidder,et al.  Complete waveform model for compact binaries on eccentric orbits , 2016, 1609.05933.

[66]  J. Prochaska,et al.  Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source , 2017, Science.

[67]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[68]  Daniel George,et al.  Deep Learning for Real-time Gravitational Wave Detection and Parameter Estimation with Advanced LIGO Data , 2017, ArXiv.

[69]  Alberto J. Castro-Tirado,et al.  Multi-messenger Observations of a Binary Neutron Star , 2017 .

[70]  Johan Samsing,et al.  Eccentric Black Hole Mergers Forming in Globular Clusters , 2017, 1711.07452.

[71]  Cody Messick,et al.  Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data , 2016, 1604.04324.

[72]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[73]  A. Nitz,et al.  Distinguishing short duration noise transients in LIGO data to improve the PyCBC search for gravitational waves from high mass binary black hole mergers , 2017, 1709.08974.

[74]  E. Berti,et al.  Extreme gravity tests with gravitational waves from compact binary coalescences: (I) inspiral–merger , 2018, General Relativity and Gravitation.

[75]  Roland Haas,et al.  Eccentric, nonspinning, inspiral, Gaussian-process merger approximant for the detection and characterization of eccentric binary black hole mergers , 2017, 1711.06276.

[76]  S. Chatterjee,et al.  Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers. , 2017, Physical review letters.

[77]  T. Robson,et al.  Towards a Fourier domain waveform for non-spinning binaries with arbitrary eccentricity , 2018, Classical and Quantum Gravity.

[78]  Koichi Murase,et al.  Methodology study of machine learning for the neutron star equation of state , 2017, Physical Review D.

[79]  Harald P. Pfeiffer,et al.  Eccentric binary black hole inspiral-merger-ringdown gravitational waveform model from numerical relativity and post-Newtonian theory , 2017, Physical Review D.

[80]  Huan Yang,et al.  Extreme gravity tests with gravitational waves from compact binary coalescences: (II) ringdown , 2018, General Relativity and Gravitation.

[81]  Hunter Gabbard,et al.  Matching Matched Filtering with Deep Networks for Gravitational-Wave Astronomy. , 2017, Physical review letters.

[82]  Franz E. Bauer,et al.  A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy , 2018, Nature.

[83]  F. S. Guzman,et al.  Characterizing the velocity of a wandering black hole and properties of the surrounding medium using convolutional neural networks , 2018, 1803.06060.

[84]  J. Bustillo,et al.  Potential observations of false deviations from general relativity in gravitational wave signals from binary black holes , 2018, Physical Review D.

[85]  Xin Li,et al.  Applying deep neural networks to the detection and space parameter estimation of compact binary coalescence with a network of gravitational wave detectors , 2018, Science China Physics, Mechanics & Astronomy.

[86]  Sarah Habib,et al.  Characterization of numerical relativity waveforms of eccentric binary black hole mergers , 2019, Physical Review D.

[87]  H. Nakano,et al.  Comparison of various methods to extract ringdown frequency from gravitational wave data , 2018, Physical Review D.

[88]  Chad R. Galley,et al.  Reduced-Order Modeling with Artificial Neurons for Gravitational-Wave Inference. , 2019, Physical review letters.

[89]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.