New Functional Signatures for Understanding Melanoma Biology from Tumor Cell Lineage-Specific Analysis

[1]  Panagiotis Karras,et al.  RAB7 controls melanoma progression by exploiting a lineage-specific wiring of the endolysosomal pathway. , 2014, Cancer cell.

[2]  S. Vetter,et al.  RAGE overexpression confers a metastatic phenotype to the WM115 human primary melanoma cell line. , 2014, Biochimica et biophysica acta.

[3]  J. Partanen,et al.  Mechanisms regulating GABAergic neuron development , 2014, Cellular and Molecular Life Sciences.

[4]  C. Tacchetti,et al.  Mitochondria and Melanosomes Establish Physical Contacts Modulated by Mfn2 and Involved in Organelle Biogenesis , 2014, Current Biology.

[5]  Michael S. Goldberg,et al.  Transcription factor/microRNA axis blocks melanoma invasion program by miR-211 targeting NUAK1. , 2014, The Journal of investigative dermatology.

[6]  Nayoung Kim,et al.  Cell line modeling for systems medicine in cancers (Review) , 2013, International journal of oncology.

[7]  Joshua C. Gilbert,et al.  An Interactive Resource to Identify Cancer Genetic and Lineage Dependencies Targeted by Small Molecules , 2013, Cell.

[8]  Jiao Li,et al.  miR-10a restores human mesenchymal stem cell differentiation by repressing KLF4 , 2013, Journal of cellular physiology.

[9]  Yi Zhao,et al.  Comprehensive Characterization of 10,571 Mouse Large Intergenic Noncoding RNAs from Whole Transcriptome Sequencing , 2013, PloS one.

[10]  C. Sander,et al.  Evaluating cell lines as tumour models by comparison of genomic profiles , 2013, Nature Communications.

[11]  M. Middleton,et al.  Directed phenotype switching as an effective antimelanoma strategy. , 2013, Cancer cell.

[12]  F. Rambow,et al.  Beta-catenin inhibits melanocyte migration but induces melanoma metastasis , 2013, Oncogene.

[13]  Jean-Pierre Gillet,et al.  The clinical relevance of cancer cell lines. , 2013, Journal of the National Cancer Institute.

[14]  E. Letavernier,et al.  The Calpain/Calpastatin System Has Opposing Roles in Growth and Metastatic Dissemination of Melanoma , 2013, PloS one.

[15]  I. Davidson,et al.  MITF, the Janus transcription factor of melanoma. , 2013, Future oncology.

[16]  Sarah-Jane Schramm,et al.  BRAF mutation, NRAS mutation, and the absence of an immune-related expressed gene profile predict poor outcome in patients with stage III melanoma. , 2013, The Journal of investigative dermatology.

[17]  C. Chao,et al.  Identification and functional characterization of zebrafish Gas7 gene in early development , 2012, Journal of neuroscience research.

[18]  A. Baker,et al.  Serum microRNAs as biomarkers for recurrence in melanoma , 2012, Journal of Translational Medicine.

[19]  M. Bar‐eli,et al.  Driving transcriptional regulators in melanoma metastasis , 2012, Cancer and Metastasis Reviews.

[20]  R. Dummer,et al.  Systematic classification of melanoma cells by phenotype‐specific gene expression mapping , 2012, Pigment cell & melanoma research.

[21]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[22]  Garrett M. Dancik,et al.  A framework to select clinically relevant cancer cell lines for investigation by establishing their molecular similarity with primary human cancers. , 2011, Cancer research.

[23]  Jean-Pierre Gillet,et al.  Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance , 2011, Proceedings of the National Academy of Sciences.

[24]  J. Mesirov,et al.  Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer , 2011, Proceedings of the National Academy of Sciences.

[25]  Ru-Fang Yeh,et al.  TRPS1 Targeting by miR-221/222 Promotes the Epithelial-to-Mesenchymal Transition in Breast Cancer , 2011, Science Signaling.

[26]  P. Bahadoran,et al.  Mitf is the key molecular switch between mouse or human melanoma initiating cells and their differentiated progeny , 2011, Oncogene.

[27]  C. Bertolotto,et al.  Essential role of microphthalmia transcription factor for DNA replication, mitosis and genomic stability in melanoma , 2011, Oncogene.

[28]  Y. Inoue,et al.  The circulating microRNA-221 level in patients with malignant melanoma as a new tumor marker. , 2011, Journal of dermatological science.

[29]  I. Jurisica,et al.  NAViGaTing the Micronome – Using Multiple MicroRNA Prediction Databases to Identify Signalling Pathway-Associated MicroRNAs , 2011, PloS one.

[30]  D. Pe’er,et al.  An Integrated Approach to Uncover Drivers of Cancer , 2010, Cell.

[31]  K. Hoek,et al.  Cancer stem cells versus phenotype‐switching in melanoma , 2010, Pigment cell & melanoma research.

[32]  W. Pavan,et al.  Sox proteins in melanocyte development and melanoma , 2010, Pigment cell & melanoma research.

[33]  A. Tutt,et al.  Comparative Membranome Expression Analysis in Primary Tumors and Derived Cell Lines , 2010, PloS one.

[34]  Jun S. Song,et al.  Lineage-Specific Transcriptional Regulation of DICER by MITF in Melanocytes , 2010, Cell.

[35]  G. Mills,et al.  Future of personalized medicine in oncology: a systems biology approach. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[36]  E. Uz,et al.  Disruption of ALX1 causes extreme microphthalmia and severe facial clefting: expanding the spectrum of autosomal-recessive ALX-related frontonasal dysplasia. , 2010, American journal of human genetics.

[37]  M. Ringnér,et al.  Gene Expression Profiling–Based Identification of Molecular Subtypes in Stage IV Melanomas with Different Clinical Outcome , 2010, Clinical Cancer Research.

[38]  Jan Zakrzewski,et al.  Melanoma MicroRNA Signature Predicts Post-Recurrence Survival , 2010, Clinical Cancer Research.

[39]  T. Sauka-Spengler,et al.  Genomic code for Sox10 activation reveals a key regulatory enhancer for cranial neural crest , 2010, Proceedings of the National Academy of Sciences.

[40]  C. Bertolotto,et al.  Fifteen‐year quest for microphthalmia‐associated transcription factor target genes , 2010, Pigment cell & melanoma research.

[41]  V. Vacic,et al.  Immune profile and mitotic index of metastatic melanoma lesions enhance clinical staging in predicting patient survival , 2009, Proceedings of the National Academy of Sciences.

[42]  M. Ziman,et al.  PAX3 across the spectrum: from melanoblast to melanoma , 2009, Critical reviews in biochemistry and molecular biology.

[43]  V. Detours,et al.  Human cancer cell lines: Experimental models for cancer cells in situ? For cancer stem cells? , 2009, Biochimica et biophysica acta.

[44]  M. Bar‐eli,et al.  Transcriptional control of the melanoma malignant phenotype , 2008, Cancer biology & therapy.

[45]  Marianne Bronner-Fraser,et al.  A gene regulatory network orchestrates neural crest formation , 2008, Nature Reviews Molecular Cell Biology.

[46]  Mauro Biffoni,et al.  The promyelocytic leukemia zinc finger-microRNA-221/-222 pathway controls melanoma progression through multiple oncogenic mechanisms. , 2008, Cancer research.

[47]  R. Dummer,et al.  In vivo switching of human melanoma cells between proliferative and invasive states. , 2008, Cancer research.

[48]  Graça Raposo,et al.  Melanosomes — dark organelles enlighten endosomal membrane transport , 2007, Nature Reviews Molecular Cell Biology.

[49]  Jane Goodall,et al.  Mitf regulation of Dia1 controls melanoma proliferation and invasiveness. , 2006, Genes & development.

[50]  Adam Ertel,et al.  Pathway-specific differences between tumor cell lines and normal and tumor tissue cells , 2006, Molecular Cancer.

[51]  D. Schadendorf,et al.  Metastatic potential of melanomas defined by specific gene expression profiles with no BRAF signature. , 2006, Pigment cell research.

[52]  Hidetoshi Shimodaira,et al.  Pvclust: an R package for assessing the uncertainty in hierarchical clustering , 2006, Bioinform..

[53]  Tara L. Naylor,et al.  microRNAs exhibit high frequency genomic alterations in human cancer. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[54]  C. Chao,et al.  Human Gas7 isoforms homologous to mouse transcripts differentially induce neurite outgrowth , 2005, Journal of neuroscience research.

[55]  Gordon K. Smyth,et al.  Use of within-array replicate spots for assessing differential expression in microarray experiments , 2005, Bioinform..

[56]  R. Sandberg,et al.  Assessment of tumor characteristic gene expression in cell lines using a tissue similarity index (TSI). , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Alfonso Bellacosa,et al.  The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. , 2003, Cancer research.

[58]  M. Bittner,et al.  Mutation of melanosome protein RAB38 in chocolate mice , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[59]  John R. W. Masters,et al.  Human cancer cell lines: fact and fantasy , 2000, Nature Reviews Molecular Cell Biology.

[60]  M. J. Harris,et al.  Mouse models for neural tube closure defects. , 2000, Human molecular genetics.

[61]  A. McMahon,et al.  Neural tube, skeletal and body wall defects in mice lacking transcription factor AP-2 , 1996, Nature.

[62]  G. Salton,et al.  Automatic query formulations in information retrieval , 1982, J. Am. Soc. Inf. Sci..

[63]  A. Dreher Modeling Survival Data Extending The Cox Model , 2016 .

[64]  J. Lotz,et al.  American Association for Cancer Research , 2014 .

[65]  Cheng Li,et al.  Adjusting batch effects in microarray expression data using empirical Bayes methods. , 2007, Biostatistics.

[66]  L. Larue,et al.  The WNT/Beta-catenin pathway in melanoma. , 2006, Frontiers in bioscience : a journal and virtual library.

[67]  G. Merlo,et al.  Multiple functions of Dlx genes. , 2000, The International journal of developmental biology.