Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?
暂无分享,去创建一个
Diego Gómez-García | A. Domínguez-Rodríguez | M. Castillo-Rodríguez | R. Chaim | Eugenio Zapata-Solvas | D. Gómez-García | Rachman Chaim | Arturo Domínguez-Rodríguez | E. Zapata-Solvas | Miguel Castillo-Rodríguez
[1] R. Stokes,et al. Mechanical Behavior of Polycrystalline Magnesium Oxide at High Temperatures , 1966 .
[2] J. A. Pask,et al. High-temperature deformation of polycrystalline magnesium oxide , 1974 .
[3] P. W. Wang,et al. Optically measured diffusion constants of oxygen vacancies in MgO , 2001 .
[4] K. Morita,et al. Critical assessment of high-temperature deformation and deformed microstructure in high-purity tetragonal zirconia containing 3 mol.% yttria , 2002 .
[5] J. A. Pask,et al. Effect of Microstructure on Deformation of Polycrystalline MgO , 1971 .
[6] A. Chokshi. Diffusion, diffusion creep and grain growth characteristics of nanocrystalline and fine-grained monoclinic, tetragonal and cubic zirconia , 2003 .
[7] J. Birch,et al. Work hardening and recovery during compressive creep of polycrystalline MgO , 1974 .
[8] A. Domínguez-Rodríguez,et al. High temperature mechanical characteristics of superplastic yttria-stabilized zirconia. An examination of the flow process , 2000 .
[9] H. Hahn,et al. Creep behavior of nanocrystalline monoclinic ZrO2 , 2002 .
[10] J. Gerald,et al. Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications , 2004 .
[11] J. Gerald,et al. Suppression of elastically accommodated grain-boundary sliding in high-purity MgO , 2007 .
[12] T. Vasilos,et al. Origin of Grain-Boundary Diffusion in MgO , 1966 .
[13] A. Domínguez-Rodríguez,et al. Joining of yttria-tetragonal stabilized zirconia polycrystals using nanocrystals , 1999 .
[14] P. Flewitt,et al. Grain Boundaries: Their Microstructure and Chemistry , 2001 .
[15] F. Wakai,et al. Superplasticity-like Deformation of Nanocrystalline Monoclinic Zirconia at Elevated Temperatures , 2004 .
[16] Amiya K. Mukherjee,et al. Superplasticity in advanced materials , 1993 .
[17] Tuvia Zisner,et al. High‐Temperature Creep of Polycrystalline Magnesia: II, Effects of Additives * , 1968 .
[18] J. Picciolo,et al. Joining alumina/zirconia ceramics , 2003 .
[19] J. Philibert. Creep and diffusion , 1984 .
[20] M. Villegas,et al. Low-temperature sintering and microstructural development of nanocrystalline Y-TZP powders , 1996 .
[21] F. Wakai,et al. Deformation of Monoclinic ZrO2 Polycrystals and Y2O3‐Stabilized Tetragonal ZrO2 Polycrystals below the Monoclinic–Tetragonal Transition Temperature , 2004 .
[22] N. Browning,et al. Segregation effects at grain boundaries in fluorite-structured ceramics , 2002 .
[23] T. Langdon,et al. Flow processes in superplastic yttria-stabilized zirconia: A Deformation Limit Diagram , 2005 .
[24] Y. Chiang,et al. Characterization of Grain‐Boundary Segregation in MgO , 1981 .
[25] A. Domínguez-Rodríguez,et al. Making ceramics ductile at low homologous temperatures , 2007 .
[26] A. Domínguez-Rodríguez,et al. Microwave sintering of nanocrystalline Ytzp (3 Mol%) , 2006 .
[27] A. Domínguez-Rodríguez,et al. Grain size and temperature dependence of the threshold stress for superplastic deformation in yttria-stabilized zirconia polycrystals , 1998 .
[28] Y. Ikuhara,et al. The influence of trace impurities on the mechanical characteristics of a superplastic 2 mol% yttria stabilized zirconia , 1998 .
[29] J. Crampon. The creep microstructure of ultrafine-grained MgO polycrystals , 1980 .
[30] T. Nieh,et al. Superplasticity and Superplastic Forming of Ceramics , 1994 .
[31] M. Meyers,et al. Mechanical properties of nanocrystalline materials , 2006 .
[32] A. Burggraaf,et al. Surface and grain boundary analysis of doped zirconia ceramics studied by AES and XPS , 1992 .
[33] J. Crampon,et al. Mechanical Properties of Fine‐Grained Magnesium Oxide at Large Compressive Strains , 1980 .
[34] D. G. Morris. Mechanical Behaviour of Nanostructured Materials , 1998 .
[35] S. Sakaguchi,et al. Superplasticity of yttria-stabilized tetragonal ZrO2 polycrystals , 1986 .
[36] Y. Ikuhara,et al. Grain boundary segregation-induced phase transformation in yttria-stabilized tetragonal zirconia polycrystal , 2006 .
[37] H. Conrad,et al. Influence of an electric field on the plastic deformation of fine-grained MgO at high homologous temperatures , 2000 .
[38] K. Morita,et al. Effect of minor SiO2 addition on the creep behavior of superplastic tetragonal ZrO2 , 2004 .
[39] Doh-Yeon Kim,et al. Space-charge concepts on grain boundary impedance of a high-purity yttria-stabilized tetragonal zirconia polycrystal , 2001 .
[40] A. Domínguez-Rodríguez,et al. Experimental Assessment of Plasticity of Nanocrystalline 1.7 mol% Yttria Tetragonal Zirconia Polycrystals , 2005 .
[41] I-Wei Chen,et al. Grain Size Control of Tetragonal Zirconia Polycrystals Using the Space Charge Concept , 1990 .
[42] A. Hughes,et al. Impurity and Yttrium segregation in yttria-tetragonal zirconia , 1991 .
[43] R. Chaim. Activation energy and grain growth in nanocrystalline Y-TZP ceramics , 2008 .
[44] E. Sato,et al. Effect of small amount of alumina doping on superplastic behavior of tetragonal zirconia , 1999 .
[45] A. Domínguez-Rodríguez,et al. A critical assessment of the dislocation-driven model for superplasticity in yttria tetragonal zirconia polycrystals , 2008 .
[46] Patrick W. Whitlock,et al. A high-strain-rate superplastic ceramic , 2001, Nature.
[47] H. Conrad. Space charge and the dependence of the flow stress of ceramics on an applied electric field , 2001 .
[48] A. Domínguez-Rodríguez,et al. Model of high-temperature plastic deformation of nanocrystalline materials: Application to yttria tetragonal zirconia , 2003 .
[49] A. Domínguez-Rodríguez,et al. Heterogeneous junction of yttria partially stabilized zirconia by superplastic flow , 1998 .
[50] A. Domínguez-Rodríguez,et al. Plastic Behaviour of Nanostructured Yttria Tetragonal Zirconia Polycrystals: The Effect of Yttrium Segregation , 2004 .
[51] A. Hughes,et al. Impurity segregation study at the surface of yttria-zircOnia electrolytes by XPS , 1990 .
[52] A. Domínguez-Rodríguez,et al. Superplastic Flow of Fine‐Grained Yttria‐Stabilized Zirconia Polycrystals: Constitutive Equation and Deformation Mechanisms , 2005 .
[53] A. Goldstein,et al. Uniaxial plastic deformation in the zirconia-based nanocrystalline ceramics containing a silicate glass , 2003 .
[54] A. Domínguez-Rodríguez,et al. Joining of Y-TZP parts , 1995 .
[55] Xin Guo,et al. Grain size dependent grain boundary defect structure: case of doped zirconia , 2003 .
[56] A. Domínguez-Rodríguez,et al. Correlation between yttrium segregation at the grain boundaries and the threshold stress for plasticity in yttria-stabilized tetragonal zirconia polycrystals , 2003 .
[57] F. Finocchi,et al. Interaction between oxygen vacancies on MgO(100) , 1999 .
[58] K. Morita,et al. Doping amount and temperature dependence of superplastic flow in tetragonal ZrO2 polycrystal doped with TiO2 and/or GeO2 , 2009 .