Superplasticity in nanocrystalline ceramics: pure grain boundary phenomena or not?

Abstract Superplasticity in ceramics has been the subject of intense research activity for the last two decades. Quite recently, the fabrication of fully dense nanocrystalline oxides with grain size below 100 nm enabled examination of their superplastic behaviour. This work presents a critical analysis of the plasticity of two important nanostructured oxide systems: MgO and yttria tetragonal zirconia polycrystals. A thorough comparison of their plastic deformation reveals that nano-structuring may be a necessary, but not a sufficient condition for superplasticity in ceramics as commonly assumed. Instead, the changes in the chemical composition and the transport properties, through the bulk and at grain boundaries, versus temperature and grain size can induce a rich variety of mechanical responses.

[1]  R. Stokes,et al.  Mechanical Behavior of Polycrystalline Magnesium Oxide at High Temperatures , 1966 .

[2]  J. A. Pask,et al.  High-temperature deformation of polycrystalline magnesium oxide , 1974 .

[3]  P. W. Wang,et al.  Optically measured diffusion constants of oxygen vacancies in MgO , 2001 .

[4]  K. Morita,et al.  Critical assessment of high-temperature deformation and deformed microstructure in high-purity tetragonal zirconia containing 3 mol.% yttria , 2002 .

[5]  J. A. Pask,et al.  Effect of Microstructure on Deformation of Polycrystalline MgO , 1971 .

[6]  A. Chokshi Diffusion, diffusion creep and grain growth characteristics of nanocrystalline and fine-grained monoclinic, tetragonal and cubic zirconia , 2003 .

[7]  J. Birch,et al.  Work hardening and recovery during compressive creep of polycrystalline MgO , 1974 .

[8]  A. Domínguez-Rodríguez,et al.  High temperature mechanical characteristics of superplastic yttria-stabilized zirconia. An examination of the flow process , 2000 .

[9]  H. Hahn,et al.  Creep behavior of nanocrystalline monoclinic ZrO2 , 2002 .

[10]  J. Gerald,et al.  Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 2. Microstructural interpretation and seismological implications , 2004 .

[11]  J. Gerald,et al.  Suppression of elastically accommodated grain-boundary sliding in high-purity MgO , 2007 .

[12]  T. Vasilos,et al.  Origin of Grain-Boundary Diffusion in MgO , 1966 .

[13]  A. Domínguez-Rodríguez,et al.  Joining of yttria-tetragonal stabilized zirconia polycrystals using nanocrystals , 1999 .

[14]  P. Flewitt,et al.  Grain Boundaries: Their Microstructure and Chemistry , 2001 .

[15]  F. Wakai,et al.  Superplasticity-like Deformation of Nanocrystalline Monoclinic Zirconia at Elevated Temperatures , 2004 .

[16]  Amiya K. Mukherjee,et al.  Superplasticity in advanced materials , 1993 .

[17]  Tuvia Zisner,et al.  High‐Temperature Creep of Polycrystalline Magnesia: II, Effects of Additives * , 1968 .

[18]  J. Picciolo,et al.  Joining alumina/zirconia ceramics , 2003 .

[19]  J. Philibert Creep and diffusion , 1984 .

[20]  M. Villegas,et al.  Low-temperature sintering and microstructural development of nanocrystalline Y-TZP powders , 1996 .

[21]  F. Wakai,et al.  Deformation of Monoclinic ZrO2 Polycrystals and Y2O3‐Stabilized Tetragonal ZrO2 Polycrystals below the Monoclinic–Tetragonal Transition Temperature , 2004 .

[22]  N. Browning,et al.  Segregation effects at grain boundaries in fluorite-structured ceramics , 2002 .

[23]  T. Langdon,et al.  Flow processes in superplastic yttria-stabilized zirconia: A Deformation Limit Diagram , 2005 .

[24]  Y. Chiang,et al.  Characterization of Grain‐Boundary Segregation in MgO , 1981 .

[25]  A. Domínguez-Rodríguez,et al.  Making ceramics ductile at low homologous temperatures , 2007 .

[26]  A. Domínguez-Rodríguez,et al.  Microwave sintering of nanocrystalline Ytzp (3 Mol%) , 2006 .

[27]  A. Domínguez-Rodríguez,et al.  Grain size and temperature dependence of the threshold stress for superplastic deformation in yttria-stabilized zirconia polycrystals , 1998 .

[28]  Y. Ikuhara,et al.  The influence of trace impurities on the mechanical characteristics of a superplastic 2 mol% yttria stabilized zirconia , 1998 .

[29]  J. Crampon The creep microstructure of ultrafine-grained MgO polycrystals , 1980 .

[30]  T. Nieh,et al.  Superplasticity and Superplastic Forming of Ceramics , 1994 .

[31]  M. Meyers,et al.  Mechanical properties of nanocrystalline materials , 2006 .

[32]  A. Burggraaf,et al.  Surface and grain boundary analysis of doped zirconia ceramics studied by AES and XPS , 1992 .

[33]  J. Crampon,et al.  Mechanical Properties of Fine‐Grained Magnesium Oxide at Large Compressive Strains , 1980 .

[34]  D. G. Morris Mechanical Behaviour of Nanostructured Materials , 1998 .

[35]  S. Sakaguchi,et al.  Superplasticity of yttria-stabilized tetragonal ZrO2 polycrystals , 1986 .

[36]  Y. Ikuhara,et al.  Grain boundary segregation-induced phase transformation in yttria-stabilized tetragonal zirconia polycrystal , 2006 .

[37]  H. Conrad,et al.  Influence of an electric field on the plastic deformation of fine-grained MgO at high homologous temperatures , 2000 .

[38]  K. Morita,et al.  Effect of minor SiO2 addition on the creep behavior of superplastic tetragonal ZrO2 , 2004 .

[39]  Doh-Yeon Kim,et al.  Space-charge concepts on grain boundary impedance of a high-purity yttria-stabilized tetragonal zirconia polycrystal , 2001 .

[40]  A. Domínguez-Rodríguez,et al.  Experimental Assessment of Plasticity of Nanocrystalline 1.7 mol% Yttria Tetragonal Zirconia Polycrystals , 2005 .

[41]  I-Wei Chen,et al.  Grain Size Control of Tetragonal Zirconia Polycrystals Using the Space Charge Concept , 1990 .

[42]  A. Hughes,et al.  Impurity and Yttrium segregation in yttria-tetragonal zirconia , 1991 .

[43]  R. Chaim Activation energy and grain growth in nanocrystalline Y-TZP ceramics , 2008 .

[44]  E. Sato,et al.  Effect of small amount of alumina doping on superplastic behavior of tetragonal zirconia , 1999 .

[45]  A. Domínguez-Rodríguez,et al.  A critical assessment of the dislocation-driven model for superplasticity in yttria tetragonal zirconia polycrystals , 2008 .

[46]  Patrick W. Whitlock,et al.  A high-strain-rate superplastic ceramic , 2001, Nature.

[47]  H. Conrad Space charge and the dependence of the flow stress of ceramics on an applied electric field , 2001 .

[48]  A. Domínguez-Rodríguez,et al.  Model of high-temperature plastic deformation of nanocrystalline materials: Application to yttria tetragonal zirconia , 2003 .

[49]  A. Domínguez-Rodríguez,et al.  Heterogeneous junction of yttria partially stabilized zirconia by superplastic flow , 1998 .

[50]  A. Domínguez-Rodríguez,et al.  Plastic Behaviour of Nanostructured Yttria Tetragonal Zirconia Polycrystals: The Effect of Yttrium Segregation , 2004 .

[51]  A. Hughes,et al.  Impurity segregation study at the surface of yttria-zircOnia electrolytes by XPS , 1990 .

[52]  A. Domínguez-Rodríguez,et al.  Superplastic Flow of Fine‐Grained Yttria‐Stabilized Zirconia Polycrystals: Constitutive Equation and Deformation Mechanisms , 2005 .

[53]  A. Goldstein,et al.  Uniaxial plastic deformation in the zirconia-based nanocrystalline ceramics containing a silicate glass , 2003 .

[54]  A. Domínguez-Rodríguez,et al.  Joining of Y-TZP parts , 1995 .

[55]  Xin Guo,et al.  Grain size dependent grain boundary defect structure: case of doped zirconia , 2003 .

[56]  A. Domínguez-Rodríguez,et al.  Correlation between yttrium segregation at the grain boundaries and the threshold stress for plasticity in yttria-stabilized tetragonal zirconia polycrystals , 2003 .

[57]  F. Finocchi,et al.  Interaction between oxygen vacancies on MgO(100) , 1999 .

[58]  K. Morita,et al.  Doping amount and temperature dependence of superplastic flow in tetragonal ZrO2 polycrystal doped with TiO2 and/or GeO2 , 2009 .