Horizontal advection, diffusion and plankton spectra at the sea surface

[1] Plankton patchiness is ubiquitous in the oceans, and various physical and biological processes have been proposed as its generating mechanisms. However, a coherent statement on the problem is missing, because of both a small number of suitable observations and an incomplete understanding of the properties of reactive tracers in turbulent media. It has been suggested that horizontal advection may be the dominant process behind the observed distributions of phytoplankton and zooplankton, acting to mix tracers with longer reaction times (Rt) down to smaller scales. Conversely, the relative distributions of sea surface temperature and phytoplankton has been attributed to small-scale upwelling, where tracers with longer Rt are able to homogenize more than those with shorter reaction times. Neither of the above mechanisms can explain simultaneously the (relative) spectral slopes of temperature, phytoplankton, and zooplankton. Here, with a simple advection model and a large suite of numerical experiments, we concentrate on some of the physical processes influencing the relative distributions of tracers at the ocean surface, and we investigate (1) the impact of the spatial scale of tracer supply, (2) the role played by coherent eddies on the distribution of tracers with different Rt, and (3) the role of diffusion (so far neglected). We show that diffusion determines the distribution of temperature, regardless of the nature of the forcing. We also find that coherent structures together with differential diffusion of tracers with different Rt impact the tracer distributions. This may help in understanding the highly variable nature of observed plankton spectra.

[1]  R. Ferrari,et al.  Isopycnal Dispersion in NATRE , 2004 .

[2]  A. Ōkubo Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences , 1970 .

[3]  Annalisa Bracco,et al.  Patchy productivity in the open ocean , 2002 .

[4]  Patrice Klein,et al.  Upper Ocean Turbulence from High-Resolution 3D Simulations , 2008 .

[5]  A. Ōkubo,et al.  Turbulence, diffusion and patchiness in the sea , 1994 .

[6]  K. Denman,et al.  Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structure , 1980, Nature.

[7]  James C. McWilliams,et al.  Mesoscale to Submesoscale Transition in the California Current System. Part II: Frontal Processes , 2008 .

[8]  P. Falkowski,et al.  Role of eddy pumping in enhancing primary production in the ocean , 1991, Nature.

[9]  D. Siegel,et al.  Mesoscale Eddies, Satellite Altimetry, and New Production in the Sargasso Sea , 1999 .

[10]  A. Oschlies,et al.  An eddy‐permitting coupled physical‐biological model of the North Atlantic: 2. Ecosystem dynamics and comparison with satellite and JGOFS local studies data , 2000 .

[11]  H. Ducklow,et al.  A nitrogen-based model of plankton dynamics in the oceanic mixed layer , 1990 .

[12]  D. Mackas,et al.  Spectral Analysis of Zooplankton Spatial Heterogeneity , 1979, Science.

[13]  C. Folt,et al.  Biological drivers of zooplankton patchiness. , 1999, Trends in ecology & evolution.

[14]  T. D. Dickey,et al.  Influence of mesoscale eddies on new production in the Sargasso Sea , 1998, Nature.

[15]  Adrian P. Martin,et al.  Phytoplankton production and community structure in an unstable frontal region , 2001 .

[16]  R. A. Plumb Eddy Fluxes of Conserved Quantities by Small-Amplitude Waves , 1979 .

[17]  Patrice Klein,et al.  Impact of sub-mesoscale physics on production and subduction of phytoplankton in an oligotrophic regime , 2001 .

[18]  A. Provenzale,et al.  The velocity distribution of barotropic turbulence , 2000 .

[19]  M. Lévy,et al.  Does the low frequency variability of mesoscale dynamics explain a part of the phytoplankton and zooplankton spectral variability? , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  Dennis A. Hansell,et al.  Response to Comment on "Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms" , 2008, Science.

[21]  Adrian P. Martin,et al.  On the role of biological dynamics in plankton patchiness at the mesoscale: an example from the eastern North Atlantic Ocean , 2003 .

[22]  T. Platt Local phytoplankton abundance and turbulence , 1972 .

[23]  Edward R. Abraham,et al.  The generation of plankton patchiness by turbulent stirring , 1998, Nature.

[24]  J. Price,et al.  Lateral mixing and the North Atlantic Tracer Release Experiment: Observations and numerical simulations of Lagrangian particles and a passive tracer , 1998 .

[25]  Janet Campbell,et al.  Biogeochemical patchiness at the sea surface , 2002 .

[26]  A. Provenzale,et al.  Impact of the spatiotemporal variability of the nutrient flux on primary productivity in the ocean , 2005 .

[27]  A. P. Martin,et al.  Plankton distribution spectra: inter‐size class variability and the relative slopes for phytoplankton and zooplankton , 2002 .

[28]  P. Flament,et al.  Cautionary remarks on the spectral interpretation of turbulent flows , 1985 .

[29]  Audrey Estublier,et al.  Choice of an advection scheme for biogeochemical models , 2001 .

[30]  K. Polzin Idealized Solutions for the Energy Balance of the Finescale Internal Wave Field , 2004 .

[31]  J. McWilliams,et al.  Dispersion and mixing in quasigeostrophic turbulence. , 2004, Physical review letters.

[32]  David Archer,et al.  Modeling the impact of fronts and mesoscale circulation on the nutrient supply and biogeochemistry of the upper ocean , 2000 .

[33]  Antonello Provenzale,et al.  TRANSPORT BY COHERENT BAROTROPIC VORTICES , 1999 .

[34]  Antonello Provenzale,et al.  Elementary topology of two-dimensional turbulence from a Lagrangian viewpoint and single-particle dispersion , 1993, Journal of Fluid Mechanics.

[35]  Adrian P. Martin,et al.  Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy , 2001 .

[36]  J. Horwood Variation of fluorescence, particle-size groups, and environmental parameters in the southern North Sea , 1981 .

[37]  J. Weiss The dynamics of entropy transfer in two-dimensional hydrodynamics , 1991 .

[38]  S. Piontkovski,et al.  Spatial heterogeneity of the planktonic fields in the upper mixed layer of the open ocean , 1997 .

[39]  Schorghofer Universality of probability distributions among two-dimensional turbulent flows , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[40]  A. Watson,et al.  Mixing of a tracer in the pycnocline , 1998 .

[41]  A. Ōkubo,et al.  The chlorophyll fluctuation spectrum in the sea1,2 , 1977 .

[42]  R. Salmon,et al.  Geophysical Fluid Dynamics , 2019, Classical Mechanics in Geophysical Fluid Dynamics.

[43]  Andreas Oschlies,et al.  Eddy-induced enhancement of primary production in a model of the North Atlantic Ocean , 1998, Nature.

[44]  A. Provenzale,et al.  Velocity Probability Density Functions for Oceanic Floats , 2000 .

[45]  J. Steele,et al.  Spatial Heterogeneity and Population Stability , 1974, Nature.

[46]  S. J. Brentnall,et al.  The impact of diffusion and stirring on the dynamics of interacting populations. , 2006, Journal of theoretical biology.

[47]  C. L. Smith,et al.  The impact of mesoscale eddies on plankton dynamics in the upper ocean , 1996 .

[48]  Antonello Provenzale,et al.  Coherent vortices, Lagrangian particles and the marine ecosystem , 2004 .

[49]  A. Provenzale,et al.  Mesoscale vortices and the paradox of the plankton , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[50]  A. Robinson,et al.  Eddy-induced nutrient supply and new production in the Sargasso Sea , 1997 .

[51]  C. Pasquero Differential eddy diffusion of biogeochemical tracers , 2005 .

[52]  C. Deser,et al.  Estimation of the Surface Heat Flux Response to Sea Surface Temperature Anomalies over the Global Oceans , 2005 .

[53]  Scott C. Doney,et al.  Eddy‐driven sources and sinks of nutrients in the upper ocean: Results from a 0.1° resolution model of the North Atlantic , 2003 .

[54]  S. Spall,et al.  A numerical model of mesoscale frontal instabilities and plankton dynamics — I. Model formulation and initial experiments , 2000 .

[55]  Patrice Klein,et al.  Upper ocean turbulence from high 3-D resolution simulations , 2007 .

[56]  A. Tsuda,et al.  White-noise-like distribution of the oceanic copepod Neocalanus cristatus in the subarctic North Pacific , 1993 .

[57]  Amit Tandon,et al.  An analysis of mechanisms for submesoscale vertical motion at ocean fronts , 2006 .

[58]  A. Oschlies,et al.  An eddy‐permitting coupled physical‐biological model of the North Atlantic: 1. Sensitivity to advection numerics and mixed layer physics , 1999 .

[59]  Ian Hampton,et al.  The variance spectra of phytoplankton, krill and water temperature in the Antarctic Ocean south of Africa☆ , 1986 .