An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data

Large amounts of multimodal neuroimaging data are acquired every year worldwide. In order to extract high-dimensional information for computational neuroscience applications standardized data fusion and efficient reduction into integrative data structures are required. Such self-consistent multimodal data sets can be used for computational brain modeling to constrain models with individual measurable features of the brain, such as done with The Virtual Brain (TVB). TVB is a simulation platform that uses empirical structural and functional data to build full brain models of individual humans. For convenient model construction, we developed a processing pipeline for structural, functional and diffusion-weighted magnetic resonance imaging (MRI) and optionally electroencephalography (EEG) data. The pipeline combines several state-of-the-art neuroinformatics tools to generate subject-specific cortical and subcortical parcellations, surface-tessellations, structural and functional connectomes, lead field matrices, electrical source activity estimates and region-wise aggregated blood oxygen level dependent (BOLD) functional MRI (fMRI) time-series. The output files of the pipeline can be directly uploaded to TVB to create and simulate individualized large-scale network models that incorporate intra- and intercortical interaction on the basis of cortical surface triangulations and white matter tractograpy. We detail the pitfalls of the individual processing streams and discuss ways of validation. With the pipeline we also introduce novel ways of estimating the transmission strengths of fiber tracts in whole-brain structural connectivity (SC) networks and compare the outcomes of different tractography or parcellation approaches. We tested the functionality of the pipeline on 50 multimodal data sets. In order to quantify the robustness of the connectome extraction part of the pipeline we computed several metrics that quantify its rescan reliability and compared them to other tractography approaches. Together with the pipeline we present several principles to guide future efforts to standardize brain model construction. The code of the pipeline and the fully processed data sets are made available to the public via The Virtual Brain website (thevirtualbrain.org) and via github (https://github.com/BrainModes/TVB-empirical-data-pipeline). Furthermore, the pipeline can be directly used with High Performance Computing (HPC) resources on the Neuroscience Gateway Portal (http://www.nsgportal.org) through a convenient web-interface.

[1]  Tim B. Dyrby,et al.  Addressing the Path-Length-Dependency Confound in White Matter Tract Segmentation , 2014, PloS one.

[2]  D. V. Essen,et al.  Surface-Based and Probabilistic Atlases of Primate Cerebral Cortex , 2007, Neuron.

[3]  G. Srivastava,et al.  ICA-based procedures for removing ballistocardiogram artifacts from EEG data acquired in the MRI scanner , 2005, NeuroImage.

[4]  Keith Heberlein,et al.  Imaging human connectomes at the macroscale , 2013, Nature Methods.

[5]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[6]  João Jorge,et al.  EEG–fMRI integration for the study of human brain function , 2014, NeuroImage.

[7]  Anthony Randal McIntosh,et al.  Hundreds of brain maps in one atlas: Registering coordinate-independent primate neuro-anatomical data to a standard brain , 2012, NeuroImage.

[8]  Alan Connelly,et al.  SIFT: Spherical-deconvolution informed filtering of tractograms , 2013, NeuroImage.

[9]  Timothy R. Olsen,et al.  The Extensible Neuroimaging Archive Toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data. , 2007, Neuroinformatics.

[10]  Danielle S. Bassett,et al.  Conserved and variable architecture of human white matter connectivity , 2011, NeuroImage.

[11]  Belur V. Dasarathy,et al.  Medical Image Fusion: A survey of the state of the art , 2013, Inf. Fusion.

[12]  Karl J. Friston,et al.  Effective connectivity: Influence, causality and biophysical modeling , 2011, NeuroImage.

[13]  Louis Lemieux,et al.  Neuroimage: Special issue on multimodal data fusion , 2014, NeuroImage.

[14]  Derek K. Jones Challenges and limitations of quantifying brain connectivity in vivo with diffusion MRI , 2010 .

[15]  Thomas R. Knösche,et al.  White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI , 2013, NeuroImage.

[16]  Gustavo Deco,et al.  Using the Virtual Brain to Reveal the Role of Oscillations and Plasticity in Shaping Brain's Dynamical Landscape , 2014, Brain Connect..

[17]  David C. Van Essen,et al.  Application of Information Technology: An Integrated Software Suite for Surface-based Analyses of Cerebral Cortex , 2001, J. Am. Medical Informatics Assoc..

[18]  Timothy M. Ellmore,et al.  Anatomic and electro-physiologic connectivity of the language system: A combined DTI-CCEP study , 2011, Comput. Biol. Medicine.

[19]  Nicholas T. Carnevale,et al.  Introducing The Neuroscience Gateway , 2013, IWSG.

[20]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[21]  P. Basser Diffusion MRI: From Quantitative Measurement to In vivo Neuroanatomy , 2009 .

[22]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[23]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[24]  Eswar Damaraju,et al.  Tracking whole-brain connectivity dynamics in the resting state. , 2014, Cerebral cortex.

[25]  Alard Roebroeck,et al.  General overview on the merits of multimodal neuroimaging data fusion , 2014, NeuroImage.

[26]  Heidi Johansen-Berg,et al.  Tractography: Where Do We Go from Here? , 2011, Brain Connect..

[27]  Patric Hagmann,et al.  Mapping the human connectome at multiple scales with diffusion spectrum MRI , 2012, Journal of Neuroscience Methods.

[28]  Danilo Bzdok,et al.  The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data , 2011, BMC Research Notes.

[29]  A. Laird,et al.  An analysis of functional neuroimaging studies of dorsolateral prefrontal cortical activity in depression , 2006, Psychiatry Research: Neuroimaging.

[30]  Viktor K Jirsa,et al.  Neural Population Modes Capture Biologically Realistic Large Scale Network Dynamics , 2011, Bulletin of mathematical biology.

[31]  Daniel C. Alexander,et al.  MicroTrack: An Algorithm for Concurrent Projectome and Microstructure Estimation , 2010, MICCAI.

[32]  Viktor K. Jirsa,et al.  Spatiotemporal forward solution of the EEG and MEG using network modeling , 2002, IEEE Transactions on Medical Imaging.

[33]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[34]  Viktor K. Jirsa,et al.  The Virtual Brain: a simulator of primate brain network dynamics , 2013, Front. Neuroinform..

[35]  Maxime Descoteaux,et al.  Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom , 2011, NeuroImage.

[36]  P. V. van Zijl,et al.  Analysis of noise effects on DTI‐based tractography using the brute‐force and multi‐ROI approach , 2004, Magnetic resonance in medicine.

[37]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[38]  Nadim Joni Shah,et al.  Human cortical connectome reconstruction from diffusion weighted MRI: The effect of tractography algorithm , 2012, NeuroImage.

[39]  R. Goebel,et al.  Histological validation of DW-MRI tractography in human postmortem tissue. , 2013, Cerebral cortex.

[40]  O. Sporns,et al.  Towards the virtual brain: network modeling of the intact and the damaged brain. , 2010, Archives italiennes de biologie.

[41]  Yufeng Zang,et al.  Standardizing the intrinsic brain: Towards robust measurement of inter-individual variation in 1000 functional connectomes , 2013, NeuroImage.

[42]  Leonardo L. Gollo,et al.  Time-resolved resting-state brain networks , 2014, Proceedings of the National Academy of Sciences.

[43]  Mark E. Bastin,et al.  Test–retest reliability of structural brain networks from diffusion MRI , 2014, NeuroImage.

[44]  Vince D. Calhoun,et al.  A review of multivariate methods for multimodal fusion of brain imaging data , 2012, Journal of Neuroscience Methods.

[45]  Olaf Sporns,et al.  Making sense of brain network data , 2013, Nature Methods.

[46]  S. Debener,et al.  Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic field strength. , 2008, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[47]  P. Thiran,et al.  Mapping Human Whole-Brain Structural Networks with Diffusion MRI , 2007, PloS one.

[48]  Christian Windischberger,et al.  Toward discovery science of human brain function , 2010, Proceedings of the National Academy of Sciences.

[49]  D. V. van Essen,et al.  Challenges and Opportunities in Mining Neuroscience Data , 2011, Science.

[50]  J. Fleiss,et al.  Intraclass correlations: uses in assessing rater reliability. , 1979, Psychological bulletin.

[51]  H. Markram,et al.  Stereotypy in neocortical microcircuits , 2002, Trends in Neurosciences.

[52]  Viktor K. Jirsa,et al.  Integrating neuroinformatics tools in TheVirtualBrain , 2014, Front. Neuroinform..

[53]  A. Villringer,et al.  How Ongoing Neuronal Oscillations Account for Evoked fMRI Variability , 2011, The Journal of Neuroscience.

[54]  C. J. Honeya,et al.  Predicting human resting-state functional connectivity from structural connectivity , 2009 .

[55]  D. Louis Collins,et al.  Symmetric Atlasing and Model Based Segmentation: An Application to the Hippocampus in Older Adults , 2006, MICCAI.

[56]  Viktor K. Jirsa,et al.  Mathematical framework for large-scale brain network modeling in The Virtual Brain , 2015, NeuroImage.

[57]  R D Pascual-Marqui,et al.  Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. , 2002, Methods and findings in experimental and clinical pharmacology.

[58]  Thomas R. Knösche,et al.  Plausibility Tracking: A method to evaluate anatomical connectivity and microstructural properties along fiber pathways , 2014, NeuroImage.

[59]  Yang Wang,et al.  Characteristics and variability of structural networks derived from diffusion tensor imaging , 2012, NeuroImage.

[60]  Renaud Lopes,et al.  Intra-subject reliability of the high-resolution whole-brain structural connectome , 2014, NeuroImage.

[61]  David A. Leopold,et al.  Dynamic functional connectivity: Promise, issues, and interpretations , 2013, NeuroImage.

[62]  D. Buxhoeveden,et al.  The minicolumn hypothesis in neuroscience. , 2002, Brain : a journal of neurology.

[63]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.

[64]  Victor Alves,et al.  A hitchhiker's guide to diffusion tensor imaging , 2012, Front. Neurosci..

[65]  K. McGraw,et al.  Forming inferences about some intraclass correlation coefficients. , 1996 .

[66]  Viktor K. Jirsa,et al.  The Virtual Brain Integrates Computational Modeling and Multimodal Neuroimaging , 2013, Brain Connect..

[67]  J. DeFelipe,et al.  Microstructure of the neocortex: Comparative aspects , 2002, Journal of neurocytology.

[68]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[69]  Steen Moeller,et al.  The Human Connectome Project: A data acquisition perspective , 2012, NeuroImage.

[70]  John M Lachin,et al.  The role of measurement reliability in clinical trials , 2004, Clinical trials.

[71]  Olaf Sporns,et al.  MR connectomics: Principles and challenges , 2010, Journal of Neuroscience Methods.

[72]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[73]  M. Casanova,et al.  Morphometric variability of minicolumns in the striate cortex of Homo sapiens, Macaca mulatta, and Pan troglodytes , 2009, Journal of anatomy.

[74]  Scott T. Grafton,et al.  Dynamic reconfiguration of human brain networks during learning , 2010, Proceedings of the National Academy of Sciences.

[75]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.