Influence of obstacle disturbance in a duct on explosion characteristics of coal gas

In combination with experimental research, numerical simulation is performed to investigate the influence law of the obstacles in a duct on the explosion flame of premixed coal gas and air. The numerical method uses upwind WENO scheme and two-step chemical reaction model. The interaction mechanism is addressed between the compression wave from reflection on the right end of the duct and flame propagation. The reflected wave is found to result in the decrease of flame velocity. On this basis, we analyze the mechanism of the obstacles on flame as well as the law of flow field variation thus caused. The results suggest that, due to the obstacles, deflagration wave is repeatedly reflected, combustible gas mixture is fully compressed, temperature and pressure rise, chemical reaction speed increases, and hence flame intensity is strengthened. At the same time, a tripe point forms as a result of wall reflection of the deflagration wave from the obstacles and furthermore local flame speed increases. As the triple point propagates forward, the flame speed gradually decreases due to dissipation of energy. These conclusions provide a valuable theoretical foundation for the prediction of explosion field, prevention of fire and explosion and effective control of the combustion speed and flame propagation speed in detonation propulsion.