An approach to evaluate the energy advantage of two axes solar tracking systems in Spain

The present work shows an alterative method for determining the tracking energy advantage, defined as the additional electrical energy produced by two axes tracking systems respect to fixed devices, in order to analyze the economical profitability in Spain. For this purpose, 52 main cities of this country have been analyzed. The proposed methodology starts from irradiation data, combining diffuse models and daily–hourly relations. Different types of losses have been evaluated, and the electrical behavior of the systems has been incorporated. Final annual energetic results demonstrate that two axes devices show a relevant energy advantage (higher than 20%) for most of the national territory.

[1]  Salah Abdallah The effect of using sun tracking systems on the voltage–current characteristics and power generation of flat plate photovoltaics , 2004 .

[2]  Lucien Wald,et al.  The European Solar Radiation Atlas: a valuable digital tool , 2001 .

[3]  William David Lubitz,et al.  Effect of manual tilt adjustments on incident irradiance on fixed and tracking solar panels , 2011 .

[4]  Joseph Appelbaum,et al.  Shadow effect of adjacent solar collectors in large scale systems , 1979 .

[5]  C. F. Ratto,et al.  A new model for obtaining horizontal instantaneous global and diffuse radiation from the daily values , 1988 .

[6]  W. Beckman,et al.  Evaluation of hourly tilted surface radiation models , 1990 .

[7]  S. D. Probert,et al.  Sensor system for aligning a single-axis tracker with direct solar insolation , 1986 .

[8]  B. Psiloglou,et al.  Measurements and models for total solar irradiance on inclined surface in Athens, Greece , 1994 .

[9]  Daryl R. Myers,et al.  Solar Radiation Modeling and Measurements for Renewable Energy Applications: Data and Model Quality , 2004 .

[10]  W. Beckman,et al.  Solar Engineering of Thermal Processes , 1985 .

[11]  C. Gueymard The sun's total and spectral irradiance for solar energy applications and solar radiation models , 2004 .

[12]  A. D. Jones,et al.  A thermal model for photovoltaic systems , 2001 .

[13]  T. M. Klucher Evaluation of models to predict insolation on tilted surfaces , 1978 .

[14]  Zahari Ibarahim,et al.  A validated model of naturally ventilated PV cladding , 2000 .

[15]  K. Naito,et al.  Simulation of I–V characteristics of a PV module with shaded PV cells , 2003 .

[16]  E. Lorenzo,et al.  The impact of solar radiation variability and data discrepancies on the design of PV systems , 2004 .

[17]  M. Benghanem Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia , 2011 .

[18]  Rafael Lopez Garcia,et al.  NUEVO SISTEMA DE SEGUIMIENTO SOLAR DE DOS EJES BASADO EN EL MECANISMO DE BIELA-MANIVELA. , 2009 .

[19]  Jan F. Kreider,et al.  Tracking and stationary flat plate solar collectors: Yearly collectible energy correlations for photovoltaic applications , 1991 .

[20]  J. Hay Calculation of monthly mean solar radiation for horizontal and inclined surfaces , 1979 .

[21]  Salah Abdallah,et al.  A parabolic solar cooker with automatic two axes sun tracking system , 2010 .

[22]  N. K. Gautam,et al.  Simulation model for sizing of stand-alone solar PV system with interconnected array , 2005 .

[23]  Benjamin Y. H. Liu,et al.  The long-term average performance of flat-plate solar-energy collectors , 1963 .

[24]  A. Zemel,et al.  Validation of models for global irradiance on inclined planes , 1992 .

[25]  R. Hanitsch,et al.  Actual optical and thermal performance of PV-modules , 1995 .

[26]  A. Rabl,et al.  The average distribution of solar radiation-correlations between diffuse and hemispherical and between daily and hourly insolation values , 1979 .

[27]  Benjamin Y. H. Liu,et al.  The interrelationship and characteristic distribution of direct, diffuse and total solar radiation , 1960 .

[28]  Richard Perez,et al.  An anisotropic hourly diffuse radiation model for sloping surfaces: Description, performance validation, site dependency evaluation , 1986 .

[29]  Runsheng Tang,et al.  Optical performance of vertical axis three azimuth angles tracked solar panels , 2011 .

[30]  Hongxing Yang,et al.  Thermal regulation of photovoltaic cladding , 1997 .

[31]  J. Duffie,et al.  Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation , 1982 .

[32]  James E. Braun,et al.  Solar geometry for fixed and tracking surfaces , 1983 .

[33]  Tian Pau Chang,et al.  The gain of single-axis tracked panel according to extraterrestrial radiation , 2009 .

[34]  J. Orgill,et al.  Correlation equation for hourly diffuse radiation on a horizontal surface , 1976 .

[35]  T. Chang Output energy of a photovoltaic module mounted on a single-axis tracking system , 2009 .

[36]  A.Monem Saleh The shadow template a new method of design of sunshading devices , 1982 .

[37]  Mustapha Koussa,et al.  Measured and modelled improvement in solar energy yield from flat plate photovoltaic systems utilizing different tracking systems and under a range of environmental conditions , 2011 .