An Influence of Factors of Flow Condition, Particle and Material Properties on Slurry Erosion Resistance

Abstract The degradation of materials due to slurry erosion is the serious problem which occurs in the power industries. The paper presents actual knowledge about an influence of individual factors connected with flow conditions, particles and material properties on the slurry erosion resistance. Among the factors connected with operating conditions, an influence of impact angle, and velocity of impact, particle concertation and liquid temperature have been described. In case of the factors connected with solid particle properties, an influence of the size, shape and hardness have been discussed. In the part devoted to the impact of material properties, due to different types of materials, the issues of resistance to erosion of slurries related to the properties of steel, ceramics and polymers are discussed separately. In the paper has been shown that a change of any of mentioned factors causes a change in the erosion rate due to the synergistic effects that accompany to slurry degradation.

[1]  W. Elliot Erosion , 1892, The Dental register.

[2]  E. Cox A method of assigning numerical and percentage values to the degree of roundness of sand grains , 1927 .

[3]  I. Finnie Erosion of surfaces by solid particles , 1960 .

[4]  J. Bitter A study of erosion phenomena part I , 1963 .

[5]  I. Finnie,et al.  On the Ductile Behavior of Nominally Brittle Materials During Erosive Cutting , 1966 .

[6]  A. Levy The solid particle erosion behavior of steel as a function of microstructure , 1981 .

[7]  J. Zahavi,et al.  Solid particle erosion of polymeric coatings , 1981 .

[8]  Alan V. Levy,et al.  Experimental measurement of accelerated erosion in a slurry pot tester , 1981 .

[9]  A. Elkholy Prediction of abrasion wear for slurry pump materials , 1983 .

[10]  A. Levy,et al.  Erosion of steels in liquid slurries , 1984 .

[11]  T.F.J. Quinn,et al.  The role of wear in the failure of common tribosystems , 1984 .

[12]  I. Wright,et al.  Slurry erosion of WC-Co cermets and ceramics , 1985 .

[13]  S. L. Narasimhan,et al.  Engine valves - Design and material evolution , 1987 .

[14]  J. Masounave,et al.  The effect of sand concentration on the erosion of materials by a slurry jet , 1989 .

[15]  S. Bahadur,et al.  Erodent particle characterization and the effect of particle size and shape on erosion , 1990 .

[16]  H. Clark,et al.  On the particle size effect in slurry erosion , 1991 .

[17]  F. Lin,et al.  Effect of impact velocity on slurry erosion and a new design of a slurry erosion tester , 1991 .

[18]  Lin Fuyan,et al.  The effect of impingement angle on slurry erosion , 1991 .

[19]  I. Hutchings Tribology: Friction and Wear of Engineering Materials , 1992 .

[20]  J. Nicholls Coatings and hardfacing alloys for corrosion and wear resistance in diesel engines , 1994 .

[21]  B. Roylance,et al.  The morphological attributes of wear particles — their role in identifying wear mechanisms , 1994 .

[22]  A. Burnett,et al.  Comparisons between sand blast and centripetal effect accelerator type erosion testers , 1995 .

[23]  S. Lathabai,et al.  Microstructural influence in slurry erosion of ceramics , 1995 .

[24]  K. Ludema,et al.  Wear models and predictive equations: their form and content , 1995 .

[25]  M. Bjordal,et al.  Combined erosion and corrosion of thermal sprayed WC and CrC coatings , 1995 .

[26]  Rajat Gupta,et al.  Prediction of uneven wear in a slurry pipeline on the basis of measurements in a pot tester , 1995 .

[27]  I. Finnie Some reflections on the past and future of erosion , 1995 .

[28]  I. Hutchings,et al.  The rôle of particle properties in the erosion of brittle materials , 1996 .

[29]  G. Sundararajan,et al.  Solid particle erosion behaviour of metallic materials at room and elevated temperatures , 1997 .

[30]  Jian Lu,et al.  Alumina grit blasting parameters for surface preparation in the plasma spraying operation , 1997 .

[31]  B. Mellor,et al.  Sand erosion performance of detonation gun applied tungsten carbide/cobalt-chromium coatings , 1997 .

[32]  Gwidon Stachowiak,et al.  Particle Angularity and Its Relationship to Abrasive and Erosive Wear , 2000 .

[33]  H. Clark,et al.  Wear rates and specific energies of some ceramic, cermet and metallic coatings determined in the Coriolis erosion tester , 1999 .

[34]  Q. Fang,et al.  Erosion of ceramic materials by a sand/water slurry jet , 1999 .

[35]  Z. Feng,et al.  The erosion of four materials using seven erodents — towards an understanding , 1999 .

[36]  M. Stack,et al.  Slurry erosion of metallics, polymers, and ceramics: particle size effects , 1999 .

[37]  A. Yabuki,et al.  Slurry erosion properties of ceramic coatings , 1999 .

[38]  V. Seshadri,et al.  Study of the parametric dependence of erosion wear for the parallel flow of solid–liquid mixtures , 1999 .

[39]  H. Clark,et al.  Measurements of specific energies for erosive wear using a Coriolis erosion tester , 2000 .

[40]  B. S. Mann,et al.  High-energy particle impact wear resistance of hard coatings and their application in hydroturbines , 2000 .

[41]  S. Lathabai The effect of grain size on the slurry erosive wear of Ce-TZP ceramics , 2000 .

[42]  S. Sastry,et al.  Investigation of three dimensional interstitial velocity, solids motion, and orientation in solid–liquid flow using particle tracking velocimetry , 2001 .

[43]  B. S. Mann,et al.  Abrasive and erosive wear characteristics of plasma nitriding and HVOF coatings: their application in hydro turbines , 2001 .

[44]  H. M Hawthorne,et al.  Some Coriolis slurry erosion test developments , 2002 .

[45]  Q. Chen,et al.  Computer simulation of solid particle erosion , 2003 .

[46]  Bhola Thapa,et al.  Sand Erosion in Hydraulic Machinery , 2004 .

[47]  H. Frijlink,et al.  Which shape factor(s) best describe granules , 2004 .

[48]  A. H. Yegneswaran,et al.  Effect of Sand Concentration in the Medium and Travel Distance and Speed on the Slurry Wear Response of a Zinc-Based Alloy Alumina Particle Composite , 2004 .

[49]  B. K. Gandhi,et al.  Nominal particle size of multi-sized particulate slurries for evaluation of erosion wear and effect of fine particles , 2004 .

[50]  S. Jain,et al.  EFFECT OF PHYSICAL PROPERTIES OF SOLID PARTICLE ON EROSION WEAR OF DUCTILE MATERIALS , 2005 .

[51]  S. Raadnui,et al.  Wear particle analysis—utilization of quantitative computer image analysis: A review , 2005 .

[52]  Y. Oka,et al.  Practical estimation of erosion damage caused by solid particle impact: Part 1: Effects of impact parameters on a predictive equation , 2005 .

[53]  K. M. Emara,et al.  Effect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white cast iron , 2007 .

[54]  C. B. Carter,et al.  Ceramic Materials: Science and Engineering , 2013 .

[55]  J. F. Santa,et al.  Slurry erosion of thermal spray coatings and stainless steels for hydraulic machinery , 2007 .

[56]  Yu-Fei Wang,et al.  Finite element model of erosive wear on ductile and brittle materials , 2008 .

[57]  S. Jain,et al.  Slurry erosion of ductile materials under normal impact condition , 2008 .

[58]  S. Jain,et al.  Particle size effects on the slurry erosion of aluminium alloy (AA 6063) , 2009 .

[59]  J. F. Santa,et al.  Slurry and cavitation erosion resistance of thermal spray coatings , 2009 .

[60]  R. P. Saini,et al.  Effect of size and concentration of silt particles on erosion of Pelton turbine buckets , 2009 .

[61]  Artur Bartosik,et al.  Influence of Coarse-Dispersive Solid Phase on the ‘Particles-Wall’ Shear Stress in Turbulent Slurry Flow with High Solid Concentration , 2010 .

[62]  A. Zbrowski,et al.  Analiza systemów wykorzystywanych w badaniach uderzeniowego zużycia erozyjnego , 2011 .

[63]  S. Bhandari,et al.  Slurry Erosion Performance Study of Detonation Gun-Sprayed WC-10Co-4Cr Coatings on CF8M Steel Under Hydro-Accelerated Conditions , 2012, Journal of Thermal Spray Technology.

[64]  Anupam Agrawal,et al.  Design and Development of High-Velocity Slurry Erosion Test Rig Using CFD , 2012, Journal of Materials Engineering and Performance.

[65]  N. Eshtiaghi,et al.  Effect of baffles on solid-liquid mass transfer coefficient in high solid concentration mixing , 2012 .

[66]  J. F. Santa,et al.  Cavitation and high-velocity slurry erosion resistance of welded Stellite 6 alloy , 2012 .

[67]  Jingzhou Yang,et al.  Solid particle impact erosion of alumina-based refractories at elevated temperatures , 2012 .

[68]  Mohsen A. Hassan,et al.  A fuzzy model for evaluation and prediction of slurry erosion of 5127 steels , 2012 .

[69]  H. Singh,et al.  Slurry Erosion of Thermal Spray Coatings: Effect of Sand Concentration , 2013 .

[70]  H. Arora,et al.  Zirconium based bulk metallic glass—Better resistance to slurry erosion compared to hydroturbine steel , 2013 .

[71]  Lai‐Chang Zhang,et al.  Solid particle erosion of alumina ceramics at elevated temperature , 2013 .

[72]  N. Arora,et al.  A comparative study on slurry and dry erosion behaviour of HVOF sprayed WC–CoCr coatings , 2013 .

[73]  B. Shollock,et al.  Slurry Erosion Performance of Ni-Al2O3 Based Thermal-Sprayed Coatings: Effect of Angle of Impingement , 2014, Journal of Thermal Spray Technology.

[74]  H. Singh,et al.  Slurry Erosion Mechanism of Hydroturbine Steel: Effect of Operating Parameters , 2013, Tribology Letters.

[75]  B. Saleh,et al.  Slurry Erosion–Corrosion of Carburized AISI 5117 Steel , 2013, Tribology Letters.

[76]  E. A. Gallardo-Hernández,et al.  Solid particle erosion of AISI 304, 316 and 420 stainless steels , 2013 .

[77]  T. Hejwowski Nowoczesne powłoki nakładane cieplnie odporne na zużycie ścierne i erozyjne , 2013 .

[78]  Khalid M. Saqr,et al.  Experimental investigation of erosion-corrosion phenomena in a steel fitting due to plain and slurry seawater flow , 2014 .

[79]  M. Lindgren,et al.  Slurry pot investigation of the influence of erodent characteristics on the erosion resistance of austenitic and duplex stainless steel grades , 2014 .

[80]  D. B. Goel,et al.  Effect of carbides on erosion resistance of 23-8-N steel , 2014, Bulletin of Materials Science.

[81]  D. K. Dwivedi,et al.  Cobalt-Free Laser Cladding on AISI Type 316L Stainless Steel for Improved Cavitation and Slurry Erosion Wear Behavior , 2014, Journal of Materials Engineering and Performance.

[82]  V. B. Nguyen,et al.  Slurry erosion characteristics and erosion mechanisms of stainless steel , 2014 .

[83]  D. Chatterjee,et al.  Erosion Characteristics of Nanoparticle-Reinforced Polyurethane Coatings on Stainless Steel Substrate , 2015, Journal of Materials Engineering and Performance.

[84]  Avnish Kumar,et al.  Effect of heat treatment on microstructure, mechanical properties and erosion resistance of cast 23-8-N nitronic steel , 2015 .

[85]  K. Goyal,et al.  Experimental Investigation of Slurry Erosion Behaviour of Hard Faced AISI 316L Stainless Steel , 2015 .

[86]  S. Gawande,et al.  Effect of Impacting Particle Kinetic Energy on Slurry Erosion Wear , 2015, Journal of Bio- and Tribo-Corrosion.

[87]  J. Vuorinen,et al.  Corrigendum to “High-temperature slurry erosion of vinylester matrix composites – The effect of test parameters” [Wear 328–329 (2015) 488–497] , 2015 .

[88]  J. Vuorinen,et al.  High-temperature slurry erosion of vinylester matrix composites – The effect of test parameters , 2015 .

[89]  Hao Zhu,et al.  Optimization design for throttle valve of managed pressure drilling based on CFD erosion simulation and response surface methodology , 2015 .

[90]  R. Mohan,et al.  Critical sand deposition velocity for gas-liquid stratified flow in horizontal pipes , 2016 .

[91]  Jian Kang,et al.  Research on erosion wear of high-pressure pipes during hydraulic fracturing slurry flow , 2016 .

[92]  G. Tripathi,et al.  Effect of Heat Treatment on Microstructure, Mechanical Properties and Erosion Behaviour of Cast 21-4-N Nitronic Steel , 2016 .

[93]  K. M. Emara,et al.  Particle Shape and Size Effects on Slurry Erosion of AISI 5117 Steels , 2016 .

[94]  Miguel Angel Reyes Mojena,et al.  Slurry Erosion and Corrosion Behavior of Some Engineering Polymers Applied by Low-Pressure Flame Spray , 2016, Journal of Materials Engineering and Performance.

[95]  S. L. Sinha,et al.  A review on particulate slurry erosive wear of industrial materials: In context with pipeline transportation of mineral−slurry , 2017 .

[96]  A. Krella,et al.  Slurry Erosion – Design of Test Devices , 2017 .

[97]  B. Hernik,et al.  Experimental verification of a CFD model intended for the determination of restitution coefficients used in erosion modelling , 2017 .

[98]  V. Kuokkala,et al.  Slurry erosion of steel – Review of tests, mechanisms and materials , 2018, Wear.

[99]  S. K. Mohapatra,et al.  Shape simulation of solid particles by digital interpretations of scanning electron micrographs using IPA technique , 2018 .

[100]  M. Szala,et al.  Computational analysis of solid particle-erosion produced by bottom ash slurry in 90° elbow , 2019, MATEC Web of Conferences.