The youngest massive protostars in the Large Magellanic Cloud

We demonstrate the unique capabilities of Herschel to study very young luminous extragalactic young stellar objects (YSOs) by analyzing a central strip of the Large Magellanic Cloud obtained through the HERITAGE science demonstration program. We combine PACS 100 and 160, and SPIRE 250, 350, and 500 μm photometry with 2MASS (1.25-2.17 μm) and Spitzer IRAC and MIPS (3.6-70 μm) to construct complete spectral energy distributions (SEDs) of compact sources. From these, we identify 207 candidate embedded YSOs in the observed region, ∼40% never-before identified. We discuss their position in far-infrared color-magnitude space, comparing with previously studied, spectroscopically confirmed YSOs and maser emission. All have red colors indicating massive cool envelopes and great youth. We analyze four example YSOs, determining their physical properties by fitting their SEDs with radiative transfer models. Fitting full SEDs including the Herschel data requires us to increase the ◦�� �

[1]  M. Sauvage,et al.  Herschel Inventory of The Agents of Galaxy Evolution (HERITAGE): the Large Magellanic Cloud dust , 2010, 1006.0985.

[2]  S. Ott,et al.  Herschel Space Observatory - An ESA facility for far-infrared and submillimetre astronomy , 2010, 1005.5331.

[3]  H. Roussel,et al.  In-flight calibration of the Herschel-SPIRE instrument , 2010, 1005.5073.

[4]  S. J. Liu,et al.  Herschel : the first science highlights Special feature L etter to the E ditor The Herschel-SPIRE instrument and its in-flight performance , 2010 .

[5]  H. Roussel,et al.  From filamentary clouds to prestellar cores to the stellar IMF: Initial highlights from the Herschel Gould Belt survey , 2010, 1005.2618.

[6]  Joana M. Oliveira,et al.  ICE CHEMISTRY IN EMBEDDED YOUNG STELLAR OBJECTS IN THE LARGE MAGELLANIC CLOUD , 2009, 0911.0532.

[7]  Joana M. Oliveira,et al.  A SPITZER SPACE TELESCOPE FAR-INFRARED SPECTRAL ATLAS OF COMPACT SOURCES IN THE MAGELLANIC CLOUDS. I. THE LARGE MAGELLANIC CLOUD , 2009, 0910.3339.

[8]  R. Gruendl,et al.  HIGH- AND INTERMEDIATE-MASS YOUNG STELLAR OBJECTS IN THE LARGE MAGELLANIC CLOUD , 2009, 0908.0347.

[9]  R. Gruendl,et al.  THE EVOLUTION OF MASSIVE YOUNG STELLAR OBJECTS IN THE LARGE MAGELLANIC CLOUD. I. IDENTIFICATION AND SPECTRAL CLASSIFICATION , 2009, 0904.1825.

[10]  C. Kochanek,et al.  DISCOVERY OF 5000 ACTIVE GALACTIC NUCLEI BEHIND THE MAGELLANIC CLOUDS , 2009, 0904.1740.

[11]  H. Kaneda,et al.  AKARI Near-Infrared Spectroscopy: Detection of H2O and CO2 Ices toward Young Stellar Objects in the Large Magellanic Cloud , 2008, Proceedings of the International Astronomical Union.

[12]  S. Molinari,et al.  The evolution of the spectral energy distribution in massive young stellar objects , 2008 .

[13]  G. Fuller,et al.  Multibeam maser survey of methanol and excited OH in the Magellanic Clouds: New detections and maser abundance estimates , 2008, 0801.0384.

[14]  Thomas Henning,et al.  The Photodetector Array Camera and Spectrometer (PACS) for the Herschel Space Observatory , 2004, Astronomical Telescopes + Instrumentation.

[15]  B. Schaefer A PROBLEM WITH THE CLUSTERING OF RECENT MEASURES OF THE DISTANCE TO THE LARGE MAGELLANIC CLOUD , 2007, 0709.4531.

[16]  R. Indebetouw,et al.  Embedded Star Formation in the Eagle Nebula with Spitzer GLIMPSE , 2007, 0707.1895.

[17]  R. Indebetouw,et al.  Interpreting Spectral Energy Distributions from Young Stellar Objects. II. Fitting Observed SEDs Using a Large Grid of Precomputed Models , 2006, astro-ph/0612690.

[18]  A. Zijlstra,et al.  Massive young stellar objects in the Large Magellanic Cloud: water masers and ESO-VLT 3–4 μm spectroscopy , 2006, astro-ph/0609036.

[19]  R. Indebetouw,et al.  Interpreting Spectral Energy Distributions from Young Stellar Objects. I. A Grid of 200,000 YSO Model SEDs , 2006, astro-ph/0608234.

[20]  T. Wong,et al.  Synthesis Imaging of Dense Molecular Gas in the N113 H II Region of the Large Magellanic Cloud , 2006, astro-ph/0604182.

[21]  Linda J. Smith,et al.  SPITZER SURVEY OF THE LARGE MAGELLANIC CLOUD, SURVEYING THE AGENTS OF A GALAXY'S EVOLUTION (SAGE). IV. DUST PROPERTIES IN THE INTERSTELLAR MEDIUM , 2005, Proceedings of the International Astronomical Union.

[22]  R. Indebetouw,et al.  Two-Dimensional Radiative Transfer in Protostellar Envelopes. III. Effects of Stellar Temperature , 2004 .

[23]  K. Wood,et al.  Two-dimensional Radiative Transfer in Protostellar Envelopes. II. An Evolutionary Sequence , 2003, astro-ph/0309007.

[24]  M. Wolff,et al.  Two-dimensional Radiative Transfer in Protostellar Envelopes. I. Effects of Geometry on Class I Sources , 2003, astro-ph/0303479.

[25]  J. Lazendic,et al.  Accurate positions of H2O masers in the Large Magellanic Cloud , 2002 .

[26]  Charles J. Lada,et al.  The Origin of Stars and Planetary Systems , 1999 .

[27]  E. Churchwell,et al.  Massive Star Formation , 1999 .

[28]  K. Brooks,et al.  Observations of ground-state OH in the Large Magellanic Cloud , 1997, astro-ph/9710172.

[29]  J. Whiteoak,et al.  A methanol maser in the Large Magellanic Cloud , 1992 .

[30]  J. Whiteoak,et al.  Observations of H2O masers in nearby galaxies , 1986 .

[31]  P. Cassen,et al.  The collapse of the cores of slowly rotating isothermal clouds , 1984 .