Sulcus Identification and Labeling

The complexity and the variability of the cortical folding pattern are overwhelming for human experts. Computational anatomy helps the field to harness the folding variability considered as a proxy for architectural variability. First, bottom-up processing pipelines convert the implicit encoding of the cortical folding pattern embedded in the geometry of the cortical surface into a synthetic graphic representation. Then, learning-based pattern recognition methods assemble the building blocks of the folding making up this representation in order to reconstruct the sulci of the standard nomenclature. Some attempts at improving current folding models using the same bottom-up strategy could have some impact in the near future.

[1]  Meritxell Bach Cuadra,et al.  A Surface-Based Approach to Quantify Local Cortical Gyrification , 2008, IEEE Transactions on Medical Imaging.

[2]  J. Lefévre,et al.  A reaction-diffusion model of the human brain development , 2010, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[3]  Arthur W. Toga,et al.  Automated Sulci Identification via Intrinsic Modeling of Cortical Anatomy , 2010, MICCAI.

[4]  Dinggang Shen,et al.  Spatial distribution and longitudinal development of deep cortical sulcal landmarks in infants , 2014, NeuroImage.

[5]  Frithjof Kruggel,et al.  Automatic segmentation of human brain sulci , 2008, Medical Image Anal..

[6]  Julien Lefèvre,et al.  Model-Driven Harmonic Parameterization of the Cortical Surface: HIP-HOP , 2011, IEEE Transactions on Medical Imaging.

[7]  Guillaume Auzias,et al.  Automatic sulcal line extraction on cortical surfaces using geodesic path density maps , 2012, NeuroImage.

[8]  G. Bruyn Atlas of the Cerebral Sulci, M. Ono, S. Kubik, Chad D. Abernathey (Eds.). Georg Thieme Verlag, Stuttgart, New York (1990), 232, DM 298 , 1990 .

[9]  Arno Klein,et al.  Automated extraction of nested sulcus features from human brain MRI data , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[10]  Jean-Francois Mangin,et al.  Larger is twistier: Spectral analysis of gyrification (SPANGY) applied to adult brain size polymorphism , 2012, NeuroImage.

[11]  Paul M. Thompson,et al.  A surface-based technique for warping three-dimensional images of the brain , 1996, IEEE Trans. Medical Imaging.

[12]  Arnaud Cachia,et al.  "Where do auditory hallucinations come from?"--a brain morphometry study of schizophrenia patients with inner or outer space hallucinations. , 2011, Schizophrenia bulletin.

[13]  Daniel Rueckert,et al.  Automatic anatomical brain MRI segmentation combining label propagation and decision fusion , 2006, NeuroImage.

[14]  Frithjof Kruggel,et al.  A graph matching approach for labeling brain sulci using location, orientation, and shape , 2009, Neurocomputing.

[15]  Jean-Francois Mangin,et al.  Identification of Growth Seeds in the Neonate Brain through Surfacic Helmholtz Decomposition , 2009, IPMI.

[16]  D. Louis Collins,et al.  Object-based morphometry of the cerebral cortex , 2004, IEEE Transactions on Medical Imaging.

[17]  Guillermo Sapiro,et al.  A geometric method for automatic extraction of sulcal fundi , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[18]  Jean-Francois Mangin,et al.  The Shape of the ACC Contributes to Cognitive Control Efficiency in Preschoolers , 2014, Journal of Cognitive Neuroscience.

[19]  Gabriele Lohmann,et al.  Extracting line representations of sulcal and gyral patterns in MR images of the human brain , 1998, IEEE Transactions on Medical Imaging.

[20]  Jean-Francois Mangin,et al.  Constructing a Dictionary of Human Brain Folding Patterns , 2009, MICCAI.

[21]  Jerry L Prince,et al.  Automated Sulcal Segmentation Using Watersheds on the Cortical Surface , 2002, NeuroImage.

[22]  Isabelle Bloch,et al.  From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations , 1995, Journal of Mathematical Imaging and Vision.

[23]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[24]  D. V. van Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system. , 1997, Nature.

[25]  T. Paus,et al.  Brain size and folding of the human cerebral cortex. , 2008, Cerebral cortex.

[26]  D. V. van Essen,et al.  Functional and structural mapping of human cerebral cortex: solutions are in the surfaces. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Jean-Francois Mangin,et al.  Cortical sulci recognition and spatial normalization , 2011, Medical Image Anal..

[28]  Y. Samson,et al.  "Sulcal root" generic model: a hypothesis to overcome the variability of the human cortex folding patterns. , 2005, Neurologia medico-chirurgica.

[29]  Arnaud Cachia,et al.  In-vivo measurement of cortical morphology: means and meanings. , 2010, Current opinion in neurology.

[30]  Arthur W. Toga,et al.  Cortical Shape Analysis in the Laplace-Beltrami Feature Space , 2009, MICCAI.

[31]  Jean-Francois Mangin,et al.  Automatic recognition of cortical sulci of the human brain using a congregation of neural networks , 2002, Medical Image Anal..

[32]  Alain Trouvé,et al.  Diffeomorphic Brain Registration Under Exhaustive Sulcal Constraints , 2011, IEEE Transactions on Medical Imaging.

[33]  Paul M. Thompson,et al.  Hamilton–Jacobi Skeleton on Cortical Surfaces , 2008, IEEE Transactions on Medical Imaging.

[34]  Sung Yong Shin,et al.  Spectral-based automatic labeling and refining of human cortical sulcal curves using expert-provided examples , 2010, NeuroImage.

[35]  小野 道夫,et al.  Atlas of the Cerebral Sulci , 1990 .

[36]  R. Hevner,et al.  Growth and folding of the mammalian cerebral cortex: from molecules to malformations , 2014, Nature Reviews Neuroscience.

[37]  Alan C. Evans,et al.  Spatial distribution of deep sulcal landmarks and hemispherical asymmetry on the cortical surface. , 2010, Cerebral cortex.

[38]  Lei Guo,et al.  An automated pipeline for cortical sulcal fundi extraction , 2010, Medical Image Anal..

[39]  Sang Won Seo,et al.  Automatic extraction of sulcal lines on cortical surfaces based on anisotropic geodesic distance , 2010, NeuroImage.

[40]  Gabriele Lohmann,et al.  Automatic labelling of the human cortical surface using sulcal basins , 2000, Medical Image Anal..

[41]  D. Louis Collins,et al.  Automated extraction and variability analysis of sulcal neuroanatomy , 1999, IEEE Transactions on Medical Imaging.

[42]  Richard M. Leahy,et al.  Article in Press G Model Journal of Neuroscience Methods Semi-automated Method for Delineation of Landmarks on Models of the Cerebral Cortex , 2022 .

[43]  Christos Davatzikos,et al.  Finding parametric representations of the cortical sulci using an active contour model , 1997, Medical Image Anal..

[44]  Katrin Amunts,et al.  The mid-fusiform sulcus: A landmark identifying both cytoarchitectonic and functional divisions of human ventral temporal cortex , 2014, NeuroImage.

[45]  Paul M. Thompson,et al.  Joint Sulcal Detection on Cortical Surfaces With Graphical Models and Boosted Priors , 2009, IEEE Transactions on Medical Imaging.

[46]  L. Taber Morphomechanics: transforming tubes into organs. , 2014, Current opinion in genetics & development.

[47]  F. Lazeyras,et al.  Mapping the early cortical folding process in the preterm newborn brain. , 2008, Cerebral cortex.

[48]  Arthur W. Toga,et al.  Sulcal set optimization for cortical surface registration , 2010, NeuroImage.

[49]  D. V. Essen,et al.  A tension-based theory of morphogenesis and compact wiring in the central nervous system , 1997, Nature.

[50]  Jean-Francois Mangin,et al.  Structural group analysis of cortical curvature and depth patterns in the developing brain , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[51]  M. A. García-Cabezas,et al.  A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. , 2011, Cerebral cortex.

[52]  F Bellivier,et al.  Where do auditory hallucinations come from ? , 2009, NeuroImage.

[53]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[54]  Y. Burnod,et al.  A morphogenetic model for the development of cortical convolutions. , 2005, Cerebral cortex.

[55]  P. Ellen Grant,et al.  The relationship between the presence of sulcal pits and intelligence in human brains , 2011, NeuroImage.

[56]  Isabelle Bloch,et al.  A MRF Based Random Graph Modelling the Human Cortical Topography , 1995, CVRMed.

[57]  F. Lazeyras,et al.  Primary cortical folding in the human newborn: an early marker of later functional development. , 2008, Brain : a journal of neurology.

[58]  D. V. von Cramon,et al.  Deep sulcal landmarks provide an organizing framework for human cortical folding. , 2008, Cerebral cortex.

[59]  Isabelle Bloch,et al.  A Mean Curvature Based Primal Sketch to Study the Cortical Folding Process from Antenatal to Adult Brain , 2001, MICCAI.

[60]  Katrin Amunts,et al.  Development of cortical folding during evolution and ontogeny , 2013, Trends in Neurosciences.

[61]  Katrin Amunts,et al.  Cortical Folding Patterns and Predicting Cytoarchitecture , 2007, Cerebral cortex.

[62]  Anders M. Dale,et al.  Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature , 2010, NeuroImage.

[63]  Jean-Francois Mangin,et al.  The effect of handedness on the shape of the central sulcus , 2012, NeuroImage.

[64]  M. Petrides The Human Cerebral Cortex: An MRI Atlas of the Sulci and Gyri in MNI Stereotaxic Space , 2011 .

[65]  A. Toga,et al.  Temporal dynamics of brain anatomy. , 2003, Annual review of biomedical engineering.