Large-amplitude oscillatory shear flow simulation for a FENE fluid

In this work, the FENE dumbbell model under small- and large-amplitude oscillatory shear flows using a micro-macro approach is presented. This approach involves the evolution of an ensemble of Brownian Configuration Fields which describes the polymer dynamics of the microscopic scale and the momentum equation describes the macroscopic scale. The Lissajous curves for the shear stress and the first normal stress difference versus the instantaneous strain or strain rate for the elastic or viscous projection are shown. The influences of the solvent/polymer viscosity ratio, the maximum extension length, and the relation between strain rate and frequency are analyzed. An important finding is the self-intersection of the Lissajous curves, which forms secondary loops for short extension lengths and high Weissenberg/Deborah dimensionless numbers ratio.

[1]  Hans Christian Öttinger,et al.  Variance reduced simulations of stochastic differential equations , 1995 .

[2]  MA Martien Hulsen,et al.  On the selection of parameters in the FENE-P model , 1998 .

[3]  A. J. Giacomin,et al.  Exact Analytical Solution for Large-Amplitude Oscillatory Shear Flow , 2015 .

[4]  Small- and large-amplitude oscillatory rheometry with bead–spring dumbbells in Stokesian Dynamics to mimic viscoelasticity , 2018, Journal of Non-Newtonian Fluid Mechanics.

[5]  M. Wilhelm,et al.  Microstructure and nonlinear signatures of yielding in a heterogeneous colloidal gel under large amplitude oscillatory shear , 2014 .

[6]  R. Ewoldt,et al.  The general low-frequency prediction for asymptotically nonlinear material functions in oscillatory shear , 2014 .

[7]  N. Wagner,et al.  Large amplitude oscillatory shear (LAOS) measurements to obtain constitutive equation model parameters: Giesekus model of banding and nonbanding wormlike micelles , 2012 .

[8]  Hans Christian Öttinger,et al.  Brownian configuration fields and variance reduced CONNFFESSIT , 1997 .

[9]  Gareth H. McKinley,et al.  A review of nonlinear oscillatory shear tests: Analysis and application of large amplitude oscillatory shear (LAOS) , 2011 .

[10]  Cédric Chauvière,et al.  A fast solver for Fokker-Planck equation applied to viscoelastic flows calculations , 2003 .

[11]  J. Dealy,et al.  Sliding plate rheometer studies of concentrated polystyrene solutions: Large amplitude oscillatory shear of a very high molecular weight polymer in diethyl phthalate , 1996 .

[12]  A. Giacomin,et al.  Molecular origins of nonlinear viscoelasticity , 1998 .

[13]  H. R. Warner,et al.  Kinetic Theory and Rheology of Dilute Suspensions of Finitely Extendible Dumbbells , 1972 .

[14]  S. Hatzikiriakos,et al.  Wall slip of molten high density polyethylene. I. Sliding plate rheometer studies , 1991 .

[15]  Viscoelastic flow past confined objects using a micro–macro approach , 2009 .

[16]  R. Keunings,et al.  On the occurrence of even harmonics in the shear stress response of viscoelastic fluids in large amplitude oscillatory shear , 2004 .

[17]  A. W. Mix,et al.  Large-amplitude oscillatory shear flow from the corotational Maxwell model , 2011 .

[18]  van den Bhaa Ben Brule,et al.  Simulation of viscoelastic flows using Brownian configuration fields , 1997 .

[19]  S. Zacks,et al.  Introduction to stochastic differential equations , 1988 .

[20]  Timothy Nigel Phillips,et al.  A spectral element approach to the simulation of viscoelastic flows using Brownian configuration fields , 2006 .

[21]  D. Vlassopoulos,et al.  A sequence of physical processes determined and quantified in LAOS: Application to a yield stress fluid , 2011 .

[22]  W. E. Stewart,et al.  Fluid inertia in large amplitude oscillatory shear , 1998 .

[23]  R. Thompson,et al.  A unified approach to model elasto-viscoplastic thixotropic yield-stress materials and apparent yield-stress fluids , 2013, Rheologica Acta.

[24]  B. Brulé Browian dynamics simulation of finitely extensible bead-spring chains , 1993 .

[25]  H. C. Öttinger,et al.  Calculation of viscoelastic flow using molecular models: the connffessit approach , 1993 .

[26]  R. Ewoldt,et al.  On secondary loops in LAOS via self-intersection of Lissajous–Bowditch curves , 2010 .

[27]  A. Sequeira,et al.  Micro–macro simulations of a shear-thinning viscoelastic kinetic model: applications to blood flow , 2011 .

[28]  K. Ahn,et al.  Large amplitude oscillatory shear as a way to classify the complex fluids , 2002 .

[29]  H. Ch. Öttinger,et al.  Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms , 1995 .

[30]  A. John Mallinckrodt,et al.  Computational Fluid Dynamics: An Introduction , 2012 .

[31]  A. Hosoi,et al.  New measures for characterizing nonlinear viscoelasticity in large amplitude oscillatory shear , 2008 .

[32]  A. J. Giacomin,et al.  Normal stress differences in large-amplitude oscillatory shear flow for dilute rigid dumbbell suspensions , 2015 .

[33]  C. Tiu,et al.  Yielding Behaviour of Viscoplastic Materials , 2006 .

[34]  A. J. Giacomin,et al.  Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: shear stress response. , 2014, The Journal of chemical physics.

[35]  E. Furst,et al.  The medium amplitude oscillatory shear of semi-dilute colloidal dispersions. Part I: Linear response and normal stress differences , 2014 .

[36]  J. A. Ortega,et al.  Modeling of complex fluids using micro-macro approach with transient network dynamics , 2017, Rheologica Acta.

[37]  A. Hosoi,et al.  Fingerprinting Soft Materials: A Framework for Characterizing Nonlinear Viscoelasticity , 2007, 0710.5509.

[38]  J. Murali Krishnan,et al.  Rheology of complex fluids , 2010 .

[39]  R. Keunings,et al.  The Lagrangian particle method for macroscopic and micro-macro viscoelastic flow computations , 1998 .

[40]  Xijun Fan,et al.  A kinetic theory for polymer melts VI. calculation of additional material functions , 1984 .

[41]  Petia M. Vlahovska,et al.  Nonlinear rheology of a dilute emulsion of surfactant-covered spherical drops in time-dependent flows , 2002, Journal of Fluid Mechanics.

[42]  A. Giacomin,et al.  Network theory for polymer solutions in large amplitude oscillatory shear , 2008 .

[43]  Aditya S. Khair,et al.  Large amplitude oscillatory shear of the Giesekus model , 2016 .

[44]  A. Magnin,et al.  Experimental validation of steady shear and dynamic viscosity relation for yield stress fluids , 1997 .

[45]  A. J. Giacomin,et al.  A novel sliding plate rheometer for molten plastics , 1989 .

[46]  M. Lettinga,et al.  A sequence of physical processes determined and quantified in large-amplitude oscillatory shear (LAOS): Application to theoretical nonlinear models , 2012 .