A plastid phylogenomic framework for the palm family (Arecaceae)

[1]  Jun-bo Yang,et al.  Phylogenomics and the flowering plant tree of life. , 2022, Journal of integrative plant biology.

[2]  Saravanaraj N. Ayyampalayam,et al.  Phylogenomic resolution of order- and family-level monocot relationships using 602 single-copy nuclear genes and 1375 BUSCO genes , 2022, Frontiers in Plant Science.

[3]  J. Landis,et al.  Plastome structure, phylogenomic analyses and molecular dating of Arecaceae , 2022, Frontiers in Plant Science.

[4]  R. Cowan,et al.  Phylogenomics and generic limits of Dypsidinae (Arecaceae), the largest palm radiation in Madagascar , 2022, TAXON.

[5]  Y. Hu,et al.  Phylotranscriptomic Analyses Reveal Multiple Whole-Genome Duplication Events, the History of Diversification and Adaptations in the Araceae. , 2022, Annals of Botany.

[6]  E. Kellogg,et al.  Grasses through space and time: An overview of the biogeographical and macroevolutionary history of Poaceae , 2022 .

[7]  Parice A. Brandies,et al.  Incomplete lineage sorting and phenotypic evolution in marsupials , 2022, Cell.

[8]  Hong Ma,et al.  Phylogenomic conflict analyses in the apple genus Malus s.l. reveal widespread hybridization and allopolyploidy driving diversification, with insights into the complex biogeographic history in the Northern Hemisphere. , 2022, Journal of integrative plant biology.

[9]  Hong Ma,et al.  A well-supported nuclear phylogeny of Poaceae and implications for the evolution of C 4 photosynthesis. , 2022, Molecular plant.

[10]  D. Lunt,et al.  The Cenozoic history of palms: Global diversification, biogeography and the decline of megathermal forests , 2021, Global Ecology and Biogeography.

[11]  Stephen A. Smith,et al.  Chloranthus genome provides insights into the early diversification of angiosperms , 2021, Nature Communications.

[12]  J. Macas,et al.  The ecology of palm genomes: repeat‐associated genome size expansion is constrained by aridity , 2021, bioRxiv.

[13]  Matthew A. Gitzendanner,et al.  Plastid phylogenomic insights into relationships of all flowering plant families , 2021, BMC Biology.

[14]  Andrew J. Helmstetter,et al.  Phylogenomic relationships and historical biogeography in the South American vegetable ivory palms (Phytelepheae). , 2021, Molecular phylogenetics and evolution.

[15]  J. Bennetzen,et al.  Integrated Genomic Analyses From Low-Depth Sequencing Help Resolve Phylogenetic Incongruence in the Bamboos (Poaceae: Bambusoideae) , 2021, Frontiers in Plant Science.

[16]  M. Chase,et al.  Hundreds of nuclear and plastid loci yield novel insights into orchid relationships. , 2021, American journal of botany.

[17]  Gregory W. Stull,et al.  Plastid phylogenomic analyses of Fagales reveal signatures of conflict and ancient chloroplast capture. , 2021, Molecular phylogenetics and evolution.

[18]  Ran Wei,et al.  Plastid phylogenomics provides novel insights into the infrafamilial relationship of Polypodiaceae , 2021, Cladistics : the international journal of the Willi Hennig Society.

[19]  De‐Zhu Li,et al.  Simultaneous diversification of Polypodiales and angiosperms in the Mesozoic , 2021, Cladistics : the international journal of the Willi Hennig Society.

[20]  Matthew G. Johnson,et al.  A Comprehensive Phylogenomic Platform for Exploring the Angiosperm Tree of Life , 2021, bioRxiv.

[21]  Y. Hu,et al.  Nuclear Phylotranscriptomics/Phylogenomics Support Numerous Polyploidization Events and Hypotheses for the Evolution of Rhizobial Nitrogen-Fixing Symbiosis in Fabaceae. , 2021, Molecular plant.

[22]  E. Susko,et al.  Long Branch Attraction Biases in Phylogenetics. , 2021, Systematic biology.

[23]  C. Rothfels Polyploid phylogenetics. , 2021, The New phytologist.

[24]  S. Dong,et al.  Plastid and nuclear phylogenomic incongruences and biogeographic implications of Magnolia s.l. (Magnoliaceae) , 2021, Journal of Systematics and Evolution.

[25]  Trevor C. Wilson,et al.  An updated tribal classification of Lamiaceae based on plastome phylogenomics , 2021, BMC biology.

[26]  M. Möller,et al.  Phylogenomics of Gesneriaceae using targeted capture of nuclear genes. , 2021, Molecular phylogenetics and evolution.

[27]  A. Henderson,et al.  A robust phylogenomic framework for the calamoid palms. , 2021, Molecular phylogenetics and evolution.

[28]  Bonaventure Sonké,et al.  Phylogenomics of the Palm Tribe Lepidocaryeae (Calamoideae: Arecaceae) and Description of a New Species of Mauritiella , 2021, Systematic Botany.

[29]  De‐Zhu Li,et al.  Resolving robust phylogenetic relationships of core Brassicaceae using genome skimming data , 2020 .

[30]  Andrew J. Helmstetter,et al.  Phylogenomic relationships and historical biogeography in the South American vegetable ivory palms (Phytelepheae) , 2020, bioRxiv.

[31]  Y. Hu,et al.  Asterid phylogenomics/phylotranscriptomics uncover morphological evolutionary histories and support phylogenetic placement for numerous whole genome duplications. , 2020, Molecular biology and evolution.

[32]  Y. Hu,et al.  Phylotranscriptomics in Cucurbitaceae Reveal Multiple Whole Genome Duplications and Key Morphological and Molecular Innovations. , 2020, Molecular plant.

[33]  Gregory W. Stull,et al.  Nuclear phylogenomic analyses of asterids conflict with plastome trees and support novel relationships among major lineages. , 2020, American journal of botany.

[34]  Andrew J. Helmstetter,et al.  Unraveling the Phylogenomic Relationships of the Most Diverse African Palm Genus Raphia (Calamoideae, Arecaceae) , 2020, Plants.

[35]  Jun-bo Yang,et al.  Chloroplast phylogenomics of liverworts: a reappraisal of the backbone phylogeny of liverworts with emphasis on Ptilidiales , 2020, Cladistics : the international journal of the Willi Hennig Society.

[36]  Gregory W. Stull,et al.  Exploration of Plastid Phylogenomic Conflict Yields New Insights into the Deep Relationships of Leguminosae , 2020, Systematic biology.

[37]  S. Herrando‐Moraira,et al.  Phylogeny, origin and dispersal of Saussurea (Asteraceae) based on chloroplast genome data. , 2019, Molecular phylogenetics and evolution.

[38]  Trevor C. Wilson,et al.  Speciation in Howea palms occurred in sympatry, was preceded by ancestral admixture, and was associated with edaphic and phenological adaptation. , 2019, Molecular biology and evolution.

[39]  C. dePamphilis,et al.  GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes , 2019, bioRxiv.

[40]  Xun Xu,et al.  One thousand plant transcriptomes and the phylogenomics of green plants , 2019, Nature.

[41]  Ingrid Olivares,et al.  Targeted Capture of Hundreds of Nuclear Genes Unravels Phylogenetic Relationships of the Diverse Neotropical Palm Tribe Geonomateae , 2019, Front. Plant Sci..

[42]  Brandon T. Sinn,et al.  Phylogenomics, biogeography and evolution in the American genus Brahea (Arecaceae) , 2019, Botanical Journal of the Linnean Society.

[43]  De‐Zhu Li,et al.  PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes , 2019, Plant Methods.

[44]  Matthew A. Gitzendanner,et al.  Origin of angiosperms and the puzzle of the Jurassic gap , 2019, Nature Plants.

[45]  Stephen A. Smith,et al.  Plastid phylogenomic insights into the evolution of Caryophyllales. , 2019, Molecular phylogenetics and evolution.

[46]  G. Galeano,et al.  Phylogeny, historical biogeography and diversification rates in an economically important group of Neotropical palms: Tribe Euterpeae. , 2019, Molecular phylogenetics and evolution.

[47]  M. Purugganan,et al.  Cross-species hybridization and the origin of North African date palms , 2019, Proceedings of the National Academy of Sciences.

[48]  Jerrold I. Davis,et al.  Monocot plastid phylogenomics, timeline, net rates of species diversification, the power of multi-gene analyses, and a functional model for the origin of monocots. , 2018, American journal of botany.

[49]  A. Furtado,et al.  Chloroplast phylogeography of AA genome rice species. , 2018, Molecular phylogenetics and evolution.

[50]  A. Antonelli,et al.  The roles of dispersal and mass extinction in shaping palm diversity across the Caribbean , 2018 .

[51]  Ning Wang,et al.  From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales. , 2018, American journal of botany.

[52]  M. Fishbein,et al.  Evolution on the backbone: Apocynaceae phylogenomics and new perspectives on growth forms, flowers, and fruits. , 2018, American journal of botany.

[53]  Pamela S Soltis,et al.  Plastid phylogenomic analysis of green plants: A billion years of evolutionary history. , 2018, American journal of botany.

[54]  D. Soltis,et al.  Diversification of Rosaceae since the Late Cretaceous based on plastid phylogenomics. , 2017, The New phytologist.

[55]  Chung-Shien Wu,et al.  Insights into the Existence of Isomeric Plastomes in Cupressoideae (Cupressaceae) , 2017, Genome biology and evolution.

[56]  C. Saslis-Lagoudakis,et al.  Fundamental species traits explain provisioning services of tropical American palms , 2017, Nature Plants.

[57]  Yi Hu,et al.  Evolution of Rosaceae Fruit Types Based on Nuclear Phylogeny in the Context of Geological Times and Genome Duplication , 2016, Molecular biology and evolution.

[58]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[59]  R. Olmstead,et al.  A large-scale chloroplast phylogeny of the Lamiaceae sheds new light on its subfamilial classification , 2016, Scientific Reports.

[60]  J. Dransfield,et al.  Beyond Genera Palmarum: progress and prospects in palm systematics , 2016 .

[61]  Y. Hu,et al.  Multiple Polyploidization Events across Asteraceae with Two Nested Events in the Early History Revealed by Nuclear Phylogenomics , 2016, Molecular biology and evolution.

[62]  J. Svenning,et al.  An all-evidence species-level supertree for the palms (Arecaceae). , 2016, Molecular phylogenetics and evolution.

[63]  J. Leebens-Mack,et al.  Data supporting the nuclear phylogenomics of the palm subfamily Arecoideae (Arecaceae) , 2016, Data in brief.

[64]  William J Baker,et al.  Plastid genomes reveal support for deep phylogenetic relationships and extensive rate variation among palms and other commelinid monocots. , 2016, The New phytologist.

[65]  Jerrold I. Davis,et al.  Resolving relationships within the palm subfamily Arecoideae (Arecaceae) using plastid sequences derived from next-generation sequencing. , 2015, American journal of botany.

[66]  De‐Zhu Li,et al.  Chloroplast phylogenomic analyses resolve deep-level relationships of an intractable bamboo tribe Arundinarieae (poaceae). , 2014, Systematic biology.

[67]  Hong Wang,et al.  Should genes with missing data be excluded from phylogenetic analyses? , 2014, Molecular phylogenetics and evolution.

[68]  Hong Ma,et al.  Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times , 2014, Nature Communications.

[69]  W. Baker,et al.  Three new genera of arecoid palm (Arecaceae) from eastern Malesia , 2014, Kew Bulletin.

[70]  S. Nadot,et al.  Evolution of stamen number in Ptychospermatinae (Arecaceae): insights from a new molecular phylogeny of the subtribe. , 2014, Molecular phylogenetics and evolution.

[71]  C. Lewis,et al.  Genera Palmarum: The Evolution and Classification of Palms , 2014 .

[72]  Jerrold I. Davis,et al.  Plastid genomes and deep relationships among the commelinid monocot angiosperms , 2013, Cladistics : the international journal of the Willi Hennig Society.

[73]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[74]  C. Davis,et al.  Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales , 2012, Proceedings of the National Academy of Sciences.

[75]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[76]  William J Baker,et al.  Phylogenetic relationships among arecoid palms (Arecaceae: Arecoideae). , 2011, Annals of botany.

[77]  F. Forest,et al.  Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms , 2011, BMC Biology.

[78]  Mark A. Miller,et al.  Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).

[79]  B. Morgenstern,et al.  Improved Phylogenomic Taxon Sampling Noticeably Affects Nonbilaterian Relationships , 2010, Molecular biology and evolution.

[80]  J. G. Burleigh,et al.  Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots , 2010, Proceedings of the National Academy of Sciences.

[81]  M. Chase,et al.  Complete generic-level phylogenetic analyses of palms (Arecaceae) with comparisons of supertree and supermatrix approaches. , 2009, Systematic biology.

[82]  N. Galtier,et al.  Dealing with incongruence in phylogenomic analyses , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[83]  L. Dávalos,et al.  Saturation and base composition bias explain phylogenomic conflict in Plasmodium. , 2008, Genomics.

[84]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[85]  J. Dransfield,et al.  A new subfamily classification of the palm family (Arecaceae): evidence from plastid DNA phylogeny , 2006 .

[86]  F. Delsuc,et al.  Phylogenomics: the beginning of incongruence? , 2006, Trends in genetics : TIG.

[87]  J. Wiens Can incomplete taxa rescue phylogenetic analyses from long-branch attraction? , 2005, Systematic biology.

[88]  J. Dransfield,et al.  A new phylogenetic classification of the palm family , 2005 .

[89]  J. Wiens,et al.  Missing data, incomplete taxa, and phylogenetic accuracy. , 2003, Systematic biology.

[90]  J. Badger,et al.  Probabilistic Analysis Indicates Discordant Gene Trees in Chloroplast Evolution , 2003, Journal of Molecular Evolution.

[91]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[92]  W. Hahn,et al.  A molecular phylogenetic study of the Palmae (Arecaceae) based on atpB, rbcL, and 18S nrDNA sequences. , 2002, Systematic biology.

[93]  M. Chase,et al.  Coding and noncoding plastid DNA in palm systematics. , 2001, American journal of botany.

[94]  Wei Qian,et al.  Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. , 2000, Molecular biology and evolution.

[95]  C. Birky Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[96]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .