Possibilistic mean-variance models and efficient frontiers for portfolio selection problem

In this paper, it is assumed that the rates of return on assets can be expressed by possibility distributions rather than probability distributions. We propose two kinds of portfolio selection models based on lower and upper possibilistic means and possibilistic variances, respectively, and introduce the notions of lower and upper possibilistic efficient portfolios. We also present an algorithm which can derive the explicit expression of the possibilistic efficient frontier for the possibilistic mean-variance portfolio selection problem dealing with lower bounds on asset holdings.

[1]  M. Best,et al.  The Efficient Set Mathematics When Mean-Variance Problems Are Subject to General Linear Constraints , 1990 .

[2]  Christer Carlsson,et al.  A Possibilistic Approach to Selecting Portfolios with Highest Utility Score , 2001, Fuzzy Sets Syst..

[3]  Weiyin Fei,et al.  Optimal consumption and portfolio choice with ambiguity and anticipation , 2007, Inf. Sci..

[4]  Wei-Guo Zhang,et al.  On Possibilistic Variance of Fuzzy Numbers , 2003, RSFDGrC.

[5]  E. Elton Modern portfolio theory and investment analysis , 1981 .

[6]  André F. Perold,et al.  Large-Scale Portfolio Optimization , 1984 .

[7]  Mehrdad Tamiz,et al.  An interactive three-stage model for mutual funds portfolio selection ☆ , 2007 .

[8]  Peijun Guo,et al.  Portfolio selection based on upper and lower exponential possibility distributions , 1999, Eur. J. Oper. Res..

[9]  Huang Chong-fu An application of calculated fuzzy risk , 2002 .

[10]  Jong-Shi Pang,et al.  A New and Efficient Algorithm for a Class of Portfolio Selection Problems , 1980, Oper. Res..

[11]  Xiaoxia Huang,et al.  Fuzzy chance-constrained portfolio selection , 2006, Appl. Math. Comput..

[12]  J. N. Sheen,et al.  Fuzzy Financial Profitability Analyses of Demand Side Management Alternatives , 2005, 2005 IEEE/PES Transmission & Distribution Conference & Exposition: Asia and Pacific.

[13]  W. Sharpe Portfolio Theory and Capital Markets , 1970 .

[14]  Valerio Lacagnina,et al.  A stochastic soft constraints fuzzy model for a portfolio selection problem , 2006, Fuzzy Sets Syst..

[15]  Jaroslava Hlouskova,et al.  The efficient frontier for bounded assets , 2000, Math. Methods Oper. Res..

[16]  Xun Wang,et al.  Weighted Possibilistic Variance of Fuzzy Number and Its Application in Portfolio Theory , 2005, FSKD.

[17]  A. Stuart,et al.  Portfolio Selection: Efficient Diversification of Investments , 1959 .

[18]  Peijun Guo,et al.  Portfolio selection based on fuzzy probabilities and possibility distributions , 2000, Fuzzy Sets Syst..

[19]  Alexandre M. Baptista,et al.  A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model , 2004, Manag. Sci..

[20]  Lotfi A. Zadeh,et al.  Toward a generalized theory of uncertainty (GTU)--an outline , 2005, Inf. Sci..

[21]  Christer Carlsson,et al.  On Possibilistic Mean Value and Variance of Fuzzy Numbers , 1999, Fuzzy Sets Syst..

[22]  Masahiro Inuiguchi,et al.  Portfolio selection under independent possibilistic information , 2000, Fuzzy Sets Syst..

[23]  Chinho Lin,et al.  Application of the Fuzzy Weighted Average in Strategic Portfolio Management , 2005, Decis. Sci..

[24]  Silvio Giove,et al.  An interval portfolio selection problem based on regret function , 2006, Eur. J. Oper. Res..

[25]  J. Vörös,et al.  Portfolio analysis--an analytic derivation of the efficient portfolio frontier , 1986 .

[26]  Teresa León,et al.  Viability of infeasible portfolio selection problems: A fuzzy approach , 2002, Eur. J. Oper. Res..

[27]  Harry M. Markowitz,et al.  Portfolio Optimization with Factors, Scenarios, and Realistic Short Positions , 2005, Oper. Res..

[28]  Shouyang Wang,et al.  On Fuzzy Portfolio Selection Problems , 2002, Fuzzy Optim. Decis. Mak..

[29]  Masaaki Ida,et al.  Solutions for the Portfolio Selection Problem with Interval and Fuzzy Coefficients , 2004, Reliab. Comput..

[30]  Kin Keung Lai,et al.  Decision Aiding Portfolio rebalancing model with transaction costs based on fuzzy decision theory , 2005 .

[31]  Wei-Guo Zhang,et al.  Portfolio Selection: Possibilistic Mean-Variance Model and Possibilistic Efficient Frontier , 2005, AAIM.

[32]  Kin Keung Lai,et al.  A class of linear interval programming problems and its application to portfolio selection , 2002, IEEE Trans. Fuzzy Syst..

[33]  R. C. Merton,et al.  An Analytic Derivation of the Efficient Portfolio Frontier , 1972, Journal of Financial and Quantitative Analysis.