The maximum principle for a jump-diffusion mean-field model and its application to the mean–variance problem

Abstract This paper establishes a necessary and sufficient stochastic maximum principle for a mean-field model with randomness described by Brownian motions and Poisson jumps. We also prove the existence and uniqueness of the solution to a jump-diffusion mean-field backward stochastic differential equation. A new version of the sufficient stochastic maximum principle, which only requires the terminal cost is convex in an expected sense, is applied to solve a bicriteria mean–variance portfolio selection problem.

[1]  Boualem Djehiche,et al.  A General Stochastic Maximum Principle for SDEs of Mean-field Type , 2011 .

[2]  S. Peng A general stochastic maximum principle for optimal control problems , 1990 .

[3]  A. Bensoussan Lectures on stochastic control , 1982 .

[4]  J. Bismut Conjugate convex functions in optimal stochastic control , 1973 .

[5]  Robert J. Elliott,et al.  A Stochastic Maximum Principle for a Markov Regime-Switching Jump-Diffusion Model and Its Application to Finance , 2012, SIAM J. Control. Optim..

[6]  Xunjing Li,et al.  Necessary Conditions for Optimal Control of Stochastic Systems with Random Jumps , 1994 .

[7]  Bernt Øksendal,et al.  A mean-field stochastic maximum principle via Malliavin calculus , 2012 .

[8]  B. Øksendal,et al.  Applied Stochastic Control of Jump Diffusions , 2004, Universitext.

[9]  Daniel Andersson,et al.  A Maximum Principle for SDEs of Mean-Field Type , 2011 .

[10]  B. Øksendal,et al.  Sufficient Stochastic Maximum Principle for the Optimal Control of Jump Diffusions and Applications to Finance , 2004 .

[11]  Bernt Øksendal,et al.  Forward-backward SDE games and stochastic control under model uncertainty , 2011 .

[12]  I. Karatzas,et al.  The Stochastic Maximum Principle for Linear, Convex Optimal Control with Random Coefficients , 1995 .

[13]  Robert J. Elliott,et al.  Stochastic calculus and applications , 1984, IEEE Transactions on Automatic Control.

[14]  P. Lions,et al.  Mean field games , 2007 .

[15]  Bernt Øksendal,et al.  Maximum Principles for Optimal Control of Forward-Backward Stochastic Differential Equations with Jumps , 2009, SIAM J. Control. Optim..

[16]  Olivier Guéant,et al.  Mean Field Games and Applications , 2011 .

[17]  S. Peng,et al.  Mean-field backward stochastic differential equations and related partial differential equations , 2007, 0711.2167.

[18]  X. Zhou,et al.  Continuous-Time Mean-Variance Portfolio Selection: A Stochastic LQ Framework , 2000 .

[19]  Boualem Djehiche,et al.  Mean-Field Backward Stochastic Differential Equations . A Limit Approach ∗ , 2007 .

[20]  Bernt Øksendal,et al.  Maximum Principle for Stochastic Differential Games with Partial Information , 2008 .

[21]  X. Zhou,et al.  Stochastic Controls: Hamiltonian Systems and HJB Equations , 1999 .

[22]  H. Kushner Necessary conditions for continuous parameter stochastic optimization problems , 1972 .

[23]  Juan Li,et al.  Stochastic maximum principle in the mean-field controls , 2012, Autom..