Quasi-cyclic unit memory convolutional codes
暂无分享,去创建一个
[1] Gregory S. Lauer. Some optimal partial-unit-memory codes (Corresp.) , 1979, IEEE Trans. Inf. Theory.
[2] Tom Verhoeff,et al. An updated table of minimum-distance bounds for binary linear codes , 1987, IEEE Trans. Inf. Theory.
[3] Rolf Johannesson,et al. Further results on binary convolutional codes with an optimum distance profile (Corresp.) , 1978, IEEE Trans. Inf. Theory.
[4] G. Solomon,et al. A Connection Between Block and Convolutional Codes , 1979 .
[5] Knud J. Larsen. Comments on 'An efficient algorithm for computing free distance' by Bahl, L., et al , 1973, IEEE Trans. Inf. Theory.
[6] Jørn Justesen,et al. Bounds on distances and error exponents of unit memory codes , 1983, IEEE Trans. Inf. Theory.
[7] P. Piret,et al. Structure and constructions of cyclic convolutional codes , 1976, IEEE Trans. Inf. Theory.
[8] Rolf Johannesson,et al. Robustly optimal rate one-half binary convolutional codes (Corresp.) , 1975, IEEE Trans. Inf. Theory.
[9] Solomon W. Golomb,et al. Shift Register Sequences , 1981 .
[10] G. David Forney,et al. Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.
[11] Daniel J. Costello,et al. Distance and computation in sequential decoding , 1976, IEEE Transactions on Communications.
[12] Daniel J. Costello,et al. Asymptotically catastrophic convolutional codes , 1980, IEEE Trans. Inf. Theory.
[13] Lin-nan Lee,et al. Short unit-memory byte-oriented binary convolutional codes having maximal free distance (Corresp.) , 1976, IEEE Trans. Inf. Theory.
[14] Sudhakar M. Reddy,et al. Circulant bases for cyclic codes (Corresp.) , 1970, IEEE Trans. Inf. Theory.
[15] Lalit R. Bahl,et al. An efficient algorithm for computing free distance (Corresp.) , 1972, IEEE Trans. Inf. Theory.
[16] Charles L. Weber,et al. Minimum weight convolutional codewords of finite length (Corresp.) , 1976, IEEE Trans. Inf. Theory.