Log-Sine Evaluations of Mahler Measures, II
暂无分享,去创建一个
Jonathan M. Borwein | James Wan | Armin Straub | David Borwein | J. Borwein | D. Borwein | A. Straub | J. Wan
[1] Leonard Lewin,et al. Polylogarithms and Associated Functions , 1981 .
[2] Jonathan M. Borwein,et al. Special values of generalized log-sine integrals , 2011, ISSAC '11.
[3] Hiroyuki Ochiai,et al. Higher Mahler measures and zeta functions , 2008, 0908.0171.
[4] Kazuhiro Onodera,et al. Generalized log sine integrals and the Mordell-Tornheim zeta values , 2011 .
[5] M. Kalmykov,et al. About higher order ɛ-expansion of some massive two- and three-loop master-integrals , 2005 .
[6] Jonathan M. Borwein,et al. Special values of multiple polylogarithms , 1999, math/9910045.
[7] Jonathan M. Borwein,et al. LOG-SINE EVALUATIONS OF MAHLER MEASURES , 2011, Journal of the Australian Mathematical Society.
[8] Jonathan M. Borwein,et al. Densities of Short Uniform Random Walks , 2011, Canadian Journal of Mathematics.
[9] Wadim Zudilin,et al. On the Mahler Measure of 1+X+1/X+Y +1/Y , 2011, 1102.1153.
[10] M.Yu. Kalmykov,et al. New results for the ε-expansion of certain one-, two- and three-loop Feynman diagrams , 2000 .
[11] Jonathan M. Borwein,et al. CLOSED FORMS: WHAT THEY ARE AND WHY WE CARE , 2013 .
[12] Jonathan M. Borwein,et al. Central Binomial Sums, Multiple Clausen Values, and Zeta Values , 2001, Exp. Math..
[13] M. Yu. Kalmykov,et al. lsjk - a C++ library for arbitrary-precision numeric evaluation of the generalized log-sine functions , 2005, Comput. Phys. Commun..
[14] A. I. Davydychev. Explicit results for all orders of theɛexpansion of certain massive and massless diagrams , 2000 .
[15] S. Zlobin,et al. Special values of generalized polylogarithms , 2007, 0712.1656.
[16] Jonathan M. Borwein,et al. Thirty-two Goldbach Variations , 2005, math/0502034.
[17] M.Yu. Kalmykov,et al. Massive Feynman diagrams and inverse binomial sums , 2004 .
[18] N. Touafek,et al. Mahler ’ s measure : proof of two conjectured formulae , 2008 .
[19] David W. Boyd,et al. Speculations Concerning the Range of Mahler's Measure , 1980, Canadian Mathematical Bulletin.
[20] Jonathan M. Borwein,et al. Experimentation in Mathematics: Computational Paths to Discovery , 2004 .
[21] Joseph Lipka,et al. A Table of Integrals , 2010 .
[22] L. Lewin,et al. 2763. On the evaluation of log-sine integrals , 1958, The Mathematical Gazette.
[23] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[24] Jonathan M. Borwein,et al. Log-sine evaluations of Mahler measures, Part I. , 2012 .
[25] S. Finch. Modular Forms on Sl 2 (z) , 2005 .
[26] Jonathan M. Borwein,et al. Special Values of Multidimensional Polylogarithms , 2001 .