Log-Sine Evaluations of Mahler Measures, II

Abstract. We continue the analysis of higher and multiple Mahler measures using log-sine integrals as started in “Log-sine evaluations of Mahler measures” and “Special values of generalized log-sine integrals” by two of the authors. This motivates a detailed study of various multiple polylogarithms and worked examples are given. Our techniques enable the reduction of several multiple Mahler measures, and supply an easy proof of two conjectures by Boyd.

[1]  Leonard Lewin,et al.  Polylogarithms and Associated Functions , 1981 .

[2]  Jonathan M. Borwein,et al.  Special values of generalized log-sine integrals , 2011, ISSAC '11.

[3]  Hiroyuki Ochiai,et al.  Higher Mahler measures and zeta functions , 2008, 0908.0171.

[4]  Kazuhiro Onodera,et al.  Generalized log sine integrals and the Mordell-Tornheim zeta values , 2011 .

[5]  M. Kalmykov,et al.  About higher order ɛ-expansion of some massive two- and three-loop master-integrals , 2005 .

[6]  Jonathan M. Borwein,et al.  Special values of multiple polylogarithms , 1999, math/9910045.

[7]  Jonathan M. Borwein,et al.  LOG-SINE EVALUATIONS OF MAHLER MEASURES , 2011, Journal of the Australian Mathematical Society.

[8]  Jonathan M. Borwein,et al.  Densities of Short Uniform Random Walks , 2011, Canadian Journal of Mathematics.

[9]  Wadim Zudilin,et al.  On the Mahler Measure of 1+X+1/X+Y +1/Y , 2011, 1102.1153.

[10]  M.Yu. Kalmykov,et al.  New results for the ε-expansion of certain one-, two- and three-loop Feynman diagrams , 2000 .

[11]  Jonathan M. Borwein,et al.  CLOSED FORMS: WHAT THEY ARE AND WHY WE CARE , 2013 .

[12]  Jonathan M. Borwein,et al.  Central Binomial Sums, Multiple Clausen Values, and Zeta Values , 2001, Exp. Math..

[13]  M. Yu. Kalmykov,et al.  lsjk - a C++ library for arbitrary-precision numeric evaluation of the generalized log-sine functions , 2005, Comput. Phys. Commun..

[14]  A. I. Davydychev Explicit results for all orders of theɛexpansion of certain massive and massless diagrams , 2000 .

[15]  S. Zlobin,et al.  Special values of generalized polylogarithms , 2007, 0712.1656.

[16]  Jonathan M. Borwein,et al.  Thirty-two Goldbach Variations , 2005, math/0502034.

[17]  M.Yu. Kalmykov,et al.  Massive Feynman diagrams and inverse binomial sums , 2004 .

[18]  N. Touafek,et al.  Mahler ’ s measure : proof of two conjectured formulae , 2008 .

[19]  David W. Boyd,et al.  Speculations Concerning the Range of Mahler's Measure , 1980, Canadian Mathematical Bulletin.

[20]  Jonathan M. Borwein,et al.  Experimentation in Mathematics: Computational Paths to Discovery , 2004 .

[21]  Joseph Lipka,et al.  A Table of Integrals , 2010 .

[22]  L. Lewin,et al.  2763. On the evaluation of log-sine integrals , 1958, The Mathematical Gazette.

[23]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[24]  Jonathan M. Borwein,et al.  Log-sine evaluations of Mahler measures, Part I. , 2012 .

[25]  S. Finch Modular Forms on Sl 2 (z) , 2005 .

[26]  Jonathan M. Borwein,et al.  Special Values of Multidimensional Polylogarithms , 2001 .