Improving Polygenic Prediction in Ancestrally Diverse Populations

[1]  Alicia R. Martin,et al.  Leveraging fine-mapping and multi-population training data to improve cross-population polygenic risk scores , 2022, Nature Genetics.

[2]  Y. Feng,et al.  Taiwan Biobank: A rich biomedical research database of the Taiwanese population , 2021, medRxiv.

[3]  M. Rivas,et al.  A cross-population atlas of genetic associations for 220 human phenotypes , 2021, Nature Genetics.

[4]  Matthew S. Lebo,et al.  Development and validation of a trans-ancestry polygenic risk score for type 2 diabetes in diverse populations , 2022, Genome Medicine.

[5]  M. Daly,et al.  Analysis across Taiwan Biobank, Biobank Japan, and UK Biobank identifies hundreds of novel loci for 36 quantitative traits , 2021, medRxiv.

[6]  Alicia R. Martin,et al.  Leveraging fine-mapping and non-European training data to improve trans-ethnic polygenic risk scores , 2021, medRxiv.

[7]  Elizabeth G. Atkinson,et al.  Tractor uses local ancestry to enable inclusion of admixed individuals into GWAS and boost power , 2020, Nature Genetics.

[8]  Katherine M. Siewert,et al.  Population-specific causal disease effect sizes in functionally important regions impacted by selection , 2019, Nature Communications.

[9]  Kathryn S. Burch,et al.  Large uncertainty in individual PRS estimation impacts PRS-based risk stratification , 2020, bioRxiv.

[10]  A. Price,et al.  Improving the trans-ancestry portability of polygenic risk scores by prioritizing variants in predicted cell-type-specific regulatory elements , 2020, Nature Genetics.

[11]  M. Rivas,et al.  A global atlas of genetic associations of 220 deep phenotypes , 2020, medRxiv.

[12]  Konrad J. Karczewski,et al.  Tractor: A framework allowing for improved inclusion of admixed individuals in large-scale association studies , 2020, bioRxiv.

[13]  Bjarni J. Vilhjálmsson,et al.  LDpred2: better, faster, stronger , 2020, bioRxiv.

[14]  P. Visscher,et al.  Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations , 2020, Nature Communications.

[15]  Kathryn S. Burch,et al.  Localizing components of shared transethnic genetic architecture of complex traits from GWAS summary data , 2019, bioRxiv.

[16]  M. Inouye,et al.  Towards clinical utility of polygenic risk scores. , 2019, Human molecular genetics.

[17]  Max W. Y. Lam,et al.  Genome-wide Association Studies in Ancestrally Diverse Populations: Opportunities, Methods, Pitfalls, and Recommendations , 2019, Cell.

[18]  Nicole A. Restrepo,et al.  Penetrance and Pleiotropy of Polygenic Risk Scores for Schizophrenia in 106,160 Patients Across Four Health Care Systems. , 2019, The American journal of psychiatry.

[19]  Doug Speed,et al.  Evaluating and improving heritability models using summary statistics , 2019, Nature Genetics.

[20]  M. Feldman,et al.  Analysis of polygenic risk score usage and performance in diverse human populations , 2019, Nature Communications.

[21]  Shing Wan Choi,et al.  PRSice-2: Polygenic Risk Score software for biobank-scale data , 2019, GigaScience.

[22]  Stephanie A. Bien,et al.  Genetic analyses of diverse populations improves discovery for complex traits , 2019, Nature.

[23]  Yang Ni,et al.  Polygenic prediction via Bayesian regression and continuous shrinkage priors , 2018, Nature Communications.

[24]  Robert Karlsson,et al.  RICOPILI: Rapid Imputation for COnsortias PIpeLIne , 2019, bioRxiv.

[25]  Matthew S. Lebo,et al.  Polygenic Prediction of Weight and Obesity Trajectories from Birth to Adulthood , 2019, Cell.

[26]  Alicia R. Martin,et al.  Clinical use of current polygenic risk scores may exacerbate health disparities , 2019, Nature Genetics.

[27]  Scott M. Williams,et al.  The Missing Diversity in Human Genetic Studies , 2019, Cell.

[28]  Jun Chen,et al.  Efficient cross-trait penalized regression increases prediction accuracy in large cohorts using secondary phenotypes , 2019, Nature Communications.

[29]  Naomi R. Wray,et al.  Improved polygenic prediction by Bayesian multiple regression on summary statistics , 2019, Nature Communications.

[30]  Ken Youens-Clark,et al.  Libra: scalable k-mer–based tool for massive all-vs-all metagenome comparisons , 2018, GigaScience.

[31]  Kristen S Purrington,et al.  Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes , 2018, American Journal of Human Genetics.

[32]  Brielin C. Brown,et al.  Comparative genetic architectures of schizophrenia in East Asian and European populations , 2018, Nature Genetics.

[33]  Kelsey E. Grinde,et al.  Generalizing polygenic risk scores from Europeans to Hispanics/Latinos , 2018, Genetic epidemiology.

[34]  Mary E. Haas,et al.  Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations , 2018, Nature Genetics.

[35]  E. Topol,et al.  The personal and clinical utility of polygenic risk scores , 2018, Nature Reviews Genetics.

[36]  Luke R. Lloyd-Jones,et al.  Signatures of negative selection in the genetic architecture of human complex traits , 2018, Nature Genetics.

[37]  M. Kanai,et al.  Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases , 2018, Nature Genetics.

[38]  E. Green,et al.  Prioritizing diversity in human genomics research , 2017, Nature Reviews Genetics.

[39]  Po-Ru Loh,et al.  Multi-ethnic polygenic risk scores improve risk prediction in diverse populations , 2016, bioRxiv.

[40]  Themistocles L Assimes,et al.  Leveraging Multi-ethnic Evidence for Risk Assessment of Quantitative Traits in Minority Populations. , 2017, American journal of human genetics.

[41]  Christopher R. Gignoux,et al.  Human demographic history impacts genetic risk prediction across diverse populations , 2016, bioRxiv.

[42]  Pak Chung Sham,et al.  Polygenic scores via penalized regression on summary statistics , 2016, bioRxiv.

[43]  B. Neale,et al.  Linkage disequilibrium dependent architecture of human complex traits reveals action of negative selection , 2016, bioRxiv.

[44]  S. Fullerton,et al.  Genomics is failing on diversity , 2016, Nature.

[45]  Brielin C. Brown,et al.  Transethnic genetic correlation estimates from summary statistics , 2016, bioRxiv.

[46]  Jianxin Shi,et al.  Developing and evaluating polygenic risk prediction models for stratified disease prevention , 2016, Nature Reviews Genetics.

[47]  C. Spencer,et al.  A contribution of novel CNVs to schizophrenia from a genome-wide study of 41,321 subjects: CNV Analysis Group and the Schizophrenia Working Group of the Psychiatric Genomics Consortium , 2016, bioRxiv.

[48]  D. Balding,et al.  Using Genetic Distance to Infer the Accuracy of Genomic Prediction , 2015, PLoS genetics.

[49]  P. Visscher,et al.  Modeling Linkage Disequilibrium Increases Accuracy of Polygenic Risk Scores , 2015, bioRxiv.

[50]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[51]  Joseph K. Pickrell,et al.  Approximately independent linkage disequilibrium blocks in human populations , 2015, bioRxiv.

[52]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[53]  Carson C Chow,et al.  Second-generation PLINK: rising to the challenge of larger and richer datasets , 2014, GigaScience.

[54]  M. Daly,et al.  LD Score regression distinguishes confounding from polygenicity in genome-wide association studies , 2014, Nature Genetics.

[55]  C. Spencer,et al.  Biological Insights From 108 Schizophrenia-Associated Genetic Loci , 2014, Nature.

[56]  C. Bustamante,et al.  RFMix: a discriminative modeling approach for rapid and robust local-ancestry inference. , 2013, American journal of human genetics.

[57]  Peter Donnelly,et al.  HAPGEN2: simulation of multiple disease SNPs , 2011, Bioinform..

[58]  Gregory C. Colati,et al.  Better, Faster, Stronger , 2009 .

[59]  P. Visscher,et al.  Common polygenic variation contributes to risk of schizophrenia and bipolar disorder , 2009, Nature.

[60]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .