The gas-phase structure of 1-selena-closo-dodecaborane(11), 1-SeB11H11, determined by the concerted use of electron diffraction and computational methods.

The molecular structure of 1-selena-closo-dodecaborane(11), 1-SeB11H11, has been determined by the concerted use of quantum chemical calculations and gas-phase electron diffraction. The structure has C(5v) symmetry and is distorted from a regular icosahedron mainly through the expansion of the pentagon of boron atoms adjacent to selenium, with r(a3,1)(B-B) = 192.2(2) pm. The Se-B bond length is extremely well determined [r(a3,1) (Se-B) = 212.9(2) pm] and this is reflected by a pronounced peak in the radial-distribution curve. The accuracy of the experimental structure, as well as that calculated at the MP2/962(d) level, has been gauged by comparison of the 11B chemical shifts (calculated at two different gauge-including atomic orbitals (GIAO) levels) with experimental NMR values. The inclusion of electron correlation in the magnetic property calculations (GIAO-MP2) gave superior results to those carried out using GIAO-Hartree-Fock.

[1]  D. Rankin,et al.  Accurate equilibrium structures obtained from gas-phase electron diffraction data: sodium chloride. , 2007, The journal of physical chemistry. A.

[2]  H. Robertson,et al.  Molecular structures of arachno-decaborane derivatives 6,9-X2B8H10 (X = CH2, NH, Se) including a gas-phase electron-diffraction study of 6,9-C2B8H14. , 2006, Inorganic chemistry.

[3]  J. Holub,et al.  Handles for the dicarbadodecaborane basket based on [arachno-5,10-C2B8H13]-: oxygen. , 2006, Dalton transactions.

[4]  C. Hu,et al.  1‐Oxa‐nido‐dodecaborate [OB11H12]− from the Controlled Oxidation of the closo‐Borates [B11H11]2− and [B12H12]2− , 2006 .

[5]  J. Macháček,et al.  New route to 1-thia-closo-dodecaborane(11), closo-1-SB11H11, and its halogenation reactions. The effect of the halogen on the dipole moments and the NMR spectra and the importance of spin-orbit coupling for the 11B chemical shifts. , 2006, Dalton transactions.

[6]  H. Robertson,et al.  Molecular structures of Se(SCH3)2 and Te(SCH3)2 using gas-phase electron diffraction and ab initio and DFT geometry optimisations. , 2005, Dalton transactions.

[7]  H. Robertson,et al.  The molecular structure of tetra-tert-butyldiphosphine: an extremely distorted, sterically crowded molecule. , 2004, Dalton transactions.

[8]  D. Rankin,et al.  SARACEN – molecular structures from theory and experiment: the best of both worlds , 2003 .

[9]  J. Holub,et al.  The [closo-2-CB6H7](-) ion: the first representative of the 7-vertex monocarbaborane series. , 2002, Angewandte Chemie.

[10]  J. Holub,et al.  Two isomeric phosphacarboranes 2,1- and 6,1-PCB(8)H(9), the first representatives of the 10-vertex closo phosphacarborane Series. , 2002, Inorganic chemistry.

[11]  J. Pople,et al.  Self-consistent molecular orbital methods. 21. Small split-valence basis sets for first-row elements , 2002 .

[12]  N. Hosmane,et al.  Heteroboranes of the p-block elements , 2002 .

[13]  F. Matthias Bickelhaupt,et al.  Chemistry with ADF , 2001, J. Comput. Chem..

[14]  V. A. Sipachev Local centrifugal distortions caused by internal motions of molecules , 2001 .

[15]  T. Jelínek,et al.  Phosphacarborane chemistry: the 7,8,9,11-, 7,9,8,10- and 7,8,9,10-isomers of nido-P2C2B7H9--diphosphadicarbaborane analogues of 7,8,9,10-C4B7H11. , 2001, Chemistry.

[16]  P. Schleyer,et al.  The Large closo-Borane Dianions, B(n)()H(n)()(2-) (n = 13-17) Are Aromatic, Why Are They Unknown? , 1998, Inorganic chemistry.

[17]  Paul von Ragué Schleyer,et al.  Stability and Three-Dimensional Aromaticity of closo-Monocarbaborane Anions, CBn-1Hn-, and closo-Dicarboranes, C2Bn-2Hn , 1998 .

[18]  Evert Jan Baerends,et al.  The zero order regular approximation for relativistic effects: the effect of spin-orbit coupling in closed shell molecules. , 1996 .

[19]  A. J. Blake,et al.  STRUCTURE ANALYSIS RESTRAINED BY AB INITIO CALCULATIONS : THE MOLECULAR STRUCTURE OF 2,5-DICHLOROPYRIMIDINE IN GASEOUS AND CRYSTALLINE PHASES , 1996 .

[20]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[21]  W. Kutzelnigg,et al.  Ab Initio Computation of 77Se NMR Chemical Shifts with the IGLO-SCF, the GIAO-SCF, and the GIAO-MP2 Methods , 1995 .

[22]  Evert Jan Baerends,et al.  Relativistic total energy using regular approximations , 1994 .

[23]  Paul von Ragué Schleyer,et al.  Structures and stabilization energies of methyl anions with main group substituents from the first five periods , 1994, J. Comput. Chem..

[24]  Michael Dolg,et al.  Ab initio energy-adjusted pseudopotentials for elements of groups 13-17 , 1993 .

[25]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[26]  J. Gauss Effects of electron correlation in the calculation of nuclear magnetic resonance chemical shifts , 1993 .

[27]  T. Jelínek,et al.  New weakly coordinating anions. 2. Derivatization of the carborane anion CB11H12 , 1993 .

[28]  P. Schleyer,et al.  Molecular structure of 1-aza-closo-dodecaborane(12). Experimental and theoretical refinement , 1993 .

[29]  T. Onak,et al.  Application of the ab initio/IGLO/NMR method to the structure confirmation of the [.mu.5,6-BHNR2-nido-2,4-C2B4H6]- ion intermediate observed during the interaction of closo-2,4-C2B5H7 with LiNR2 , 1993 .

[30]  P. Schleyer,et al.  Molecular structure of 1-thia-closo-dodecaborane(11) studied by electron diffraction complemented by ab initio calculations , 1992 .

[31]  Evert Jan Baerends,et al.  Numerical integration for polyatomic systems , 1992 .

[32]  P. Schleyer,et al.  On the origin of the antipodal effect in closo-heteroboranes , 1991 .

[33]  Peter Pulay,et al.  Efficient implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations , 1990 .

[34]  L. Curtiss,et al.  Compact contracted basis sets for third‐row atoms: Ga–Kr , 1990 .

[35]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[36]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[37]  V. A. Sipachev Calculation of shrinkage corrections in harmonic approximation , 1985 .

[38]  J. Pople,et al.  Self-consistent molecular orbital methods. 24. Supplemented small split-valence basis sets for second-row elements , 1982 .

[39]  Mark S. Gordon,et al.  The isomers of silacyclopropane , 1980 .

[40]  C. M. Huntley,et al.  Gas-phase molecular structure of bis(difluorophosphino)amine, determined by electron diffraction , 1980 .

[41]  A. D. McLean,et al.  Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z=11–18 , 1980 .

[42]  G. Friesen,et al.  Insertion of selenium, tellurium, or arsenic atoms into borane cage compounds using element oxide reagents , 1978 .

[43]  Thom H. Dunning,et al.  Gaussian basis sets for the atoms gallium through krypton , 1977 .

[44]  R. Ditchfield,et al.  Self-consistent perturbation theory of diamagnetism , 1974 .

[45]  Evert Jan Baerends,et al.  Self-consistent molecular Hartree—Fock—Slater calculations I. The computational procedure , 1973 .

[46]  P. C. Hariharan,et al.  The influence of polarization functions on molecular orbital hydrogenation energies , 1973 .

[47]  G. Allen NMR – Basic Principles and Progress Vol 6 , 1973 .

[48]  J. Pople,et al.  Self—Consistent Molecular Orbital Methods. XII. Further Extensions of Gaussian—Type Basis Sets for Use in Molecular Orbital Studies of Organic Molecules , 1972 .

[49]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[50]  G. Scuseria,et al.  Gaussian 03, Revision E.01. , 2007 .

[51]  Evert Jan Baerends,et al.  Towards an order , 1998 .

[52]  P. Pyykkö,et al.  How Do Spin–Orbit-Induced Heavy-Atom Effects on NMR Chemical Shifts Function? Validation of a Simple Analogy to Spin–Spin Coupling by Density Functional Theory (DFT) Calculations on Some Iodo Compounds , 1998 .

[53]  C. Morrison,et al.  Tetraborane(10), B4H10: structures in gaseous and crystalline phases , 1996 .

[54]  B. Fenet,et al.  Oxygen in an electron-deficient borane skeleton: the oxa-nido-dodecaborate anion [OB11H12]– , 1995 .

[55]  N. N. Greenwood,et al.  Synthesis, molecular structures, and nuclear magnetic resonance properties of the macropolyhedral metallaboranes [(PMe2Ph)4Pt3B14H16] and [(PMe2Ph)PtB16H18(PMe2Ph)], and a discussion of the bonding at platinum in these and some related platinaborane clusters , 1986 .

[56]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[57]  Mark S. Gordon,et al.  Self-consistent molecular-orbital methods. 22. Small split-valence basis sets for second-row elements , 1980 .

[58]  P. Jeffrey Hay,et al.  Gaussian Basis Sets for Molecular Calculations , 1977 .