Formalized Mathematics
暂无分享,去创建一个
[1] Gottlob Frege,et al. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens , 1879 .
[2] A. Kempe. On the Geographical Problem of the Four Colours , 1879 .
[3] E. Zermelo. Neuer Beweis für die Möglichkeit einer Wohlordnung , 1907 .
[4] B. Russell,et al. Principia Mathematica Vol. I , 1910 .
[5] Barbara M. H. Strang,et al. A Dictionary of Modern English Usage. , 1927 .
[6] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .
[7] Alfred Tarski,et al. Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .
[8] G. Gentzen. Untersuchungen über das logische Schließen. II , 1935 .
[9] A. Church. An Unsolvable Problem of Elementary Number Theory , 1936 .
[10] A. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .
[11] A. Tarski,et al. Über unerreichbare Kardinalzahlen , 1938 .
[12] Alan M. Turing,et al. Systems of Logic Based on Ordinals , 2012, Alan Turing's Systems of Logic.
[13] W. Ackermann,et al. Grundzüge der theoretischen Logik , 1928 .
[14] Alonzo Church,et al. A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.
[15] R. Tennant. Algebra , 1941, Nature.
[16] A. Whitehead. An Introduction to Mathematics , 1949, Nature.
[17] Nicolas Bourbaki,et al. Foundations of mathematics for the working mathematician , 1949, Journal of Symbolic Logic.
[18] P. J. Heawood. Map-Colour Theorem , 1949 .
[19] Bertrand Russell,et al. The Autobiography of Bertrand Russell , 1950 .
[20] A. Tarski. A Decision Method for Elementary Algebra and Geometry , 2023 .
[21] F. B. Fitch. Symbolic Logic, An Introduction , 1953 .
[22] H. Piaggio. Logic for Mathematicians , 1954, Nature.
[23] 日本数学会. Publications of the Mathematical Society of Japan , 1955 .
[24] M. H. Lob,et al. Solution of a Problem of Leon Henkin , 1955, J. Symb. Log..
[25] Allen Newell,et al. The logic theory machine-A complex information processing system , 1956, IRE Trans. Inf. Theory.
[26] P. H. Nidditch,et al. Introductory formal logic of mathematics , 1959 .
[27] Rudolf Carnap,et al. Introduction to Symbolic Logic and Its Applications , 1958 .
[28] P. Nidditch,et al. Introductory Formal Logic of Mathematics , 1958 .
[29] Hao Wang,et al. Toward Mechanical Mathematics , 1960, IBM J. Res. Dev..
[30] Paul C. Gilmore,et al. A Proof Method for Quantification Theory: Its Justification and Realization , 1960, IBM J. Res. Dev..
[31] Dag Prawitz,et al. A Mechanical Proof Procedure and its Realization in an Electronic Computer , 1960, JACM.
[32] V. A. Uspenskiĭ. Some Applications of Mechanics to Mathematics , 1961 .
[33] R. Dedekind,et al. Was sind und was sollen die Zahlen , 1961 .
[34] Solomon Feferman,et al. Transfinite recursive progressions of axiomatic theories , 1962, Journal of Symbolic Logic.
[35] R. Sikorski,et al. The mathematics of metamathematics , 1963 .
[36] P. Halmos. Lectures on Boolean Algebras , 1963 .
[37] R. Dedekind. Essays on the theory of numbers , 1963 .
[38] D. Prawitz. Natural Deduction: A Proof-Theoretical Study , 1965 .
[39] Paul Benacerraf,et al. Philosophy of mathematics: What numbers could not be , 1965 .
[40] J. A. Robinson,et al. A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.
[41] Martin Davis,et al. The Undecidable: Basic Papers on Undecidable Propositions, Unsolvable Problems and Computable Functions , 2004 .
[42] J. Heijenoort. From Frege to Gödel: A Source Book in Mathematical Logic, 1879-1931 , 1967 .
[43] Donald W. Loveland,et al. Mechanical Theorem-Proving by Model Elimination , 1968, JACM.
[44] J. R. Guard,et al. Semi-Automated Mathematics , 1969, JACM.
[45] G. V. Davydov. Method of Establishing Deducibility in Classical Predicate Calculus , 1969 .
[46] Norman D. Megill,et al. Metamath A Computer Language for Pure Mathematics , 1969 .
[47] G. Kreisel,et al. Hilbert's programme and the search for automatic proof procedures , 1970 .
[48] Fa Dick. The mathematical language AUTOMATH, its usage and some of its extensions , 1970 .
[49] G. Kreisel,et al. Elements of Mathematical Logic: Model Theory , 1971 .
[50] G. Kreisel. The Collected Papers of Gerhard Gentzen , 1971 .
[51] M. V. Wilkes,et al. The Art of Computer Programming, Volume 3, Sorting and Searching , 1974 .
[52] Alonzo Church,et al. Set Theory with a Universal Set , 1974 .
[53] Vaughan R. Pratt,et al. Every Prime has a Succinct Certificate , 1975, SIAM J. Comput..
[54] N. Biggs,et al. Graph Theory 1736-1936 , 1976 .
[55] Social processes and proofs of theorems and programs , 1977, POPL.
[56] J. Paris. A Mathematical Incompleteness in Peano Arithmetic , 1977 .
[57] I. Lakatos,et al. Mathematics, science and epistemology: What does a mathematical proof prove? , 1978 .
[58] G. Takeuti. Two Applications of Logic to Mathematics , 1978 .
[59] J. Schwartz,et al. Metamathematical extensibility for theorem verifiers and proof-checkers☆ , 1979 .
[60] Robert S. Boyer,et al. Metafunctions: Proving Them Correct and Using Them Efficiently as New Proof Procedures. , 1979 .
[61] Robert E. Shostak,et al. A Practical Decision Procedure for Arithmetic with Function Symbols , 1979, JACM.
[62] Michael J. C. Gordon,et al. Edinburgh LCF: A mechanised logic of computation , 1979 .
[63] de Ng Dick Bruijn,et al. A survey of the project Automath , 1980 .
[64] D. Knuth,et al. Simple Word Problems in Universal Algebras , 1983 .
[65] Kenneth Kunen,et al. Set Theory: An Introduction to Independence Proofs , 2010 .
[66] E. W. Dijkstra,et al. Invariance and non-determinacy , 1984, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[67] Hilary Putnam,et al. Philosophy of mathematics : selected readings , 1984 .
[68] S. Lane. Mathematics, Form and Function , 1985 .
[69] J. Michael Spivey,et al. Understanding Z : A specification language and its formal semantics , 1985, Cambridge tracts in theoretical computer science.
[70] Herman Rubin,et al. Equivalents of the Axiom of Choice II , 1985 .
[71] C. Cecchi,et al. Representation and use of metaknowledge , 1986, Proceedings of the IEEE.
[72] Robert L. Constable,et al. Formalized Metareasoning in Type Theory , 1986, LICS.
[73] Randal E. Bryant,et al. Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.
[74] Mark E. Stickel. A prolog Technology Theorem Prover: Implementation by an Extended Prolog Compiler , 1986, CADE.
[75] F. Richman,et al. Varieties of Constructive Mathematics: CONSTRUCTIVE ALGEBRA , 1987 .
[76] Lesław W. Szczerba. The Use of Mizar MSE in a Course in Foundations of Geometry , 1987 .
[77] Douglas J. Howe. Computational Metatheory in Nuprl , 1988, CADE.
[78] D. Kirby,et al. COMMUTATIVE RING THEORY (Cambridge Studies in Advanced Mathematics 8) , 1988 .
[79] T. Melham. Automating recursive type definitions in higher order logic , 1989 .
[80] K. Appel,et al. Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.
[81] Ralph P. Boas. Littlewood's Miscellany. Edited by Béla Bollobás , 1989 .
[82] Philip Wadler,et al. How to make ad-hoc polymorphism less ad hoc , 1989, POPL '89.
[83] Robert L. Constable,et al. The semantics of reflected proof , 1990, [1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science.
[84] Konrad Slind. An Implementation of higher order logic , 1990 .
[85] A. J. M. van Gasteren,et al. On the Shape of Mathematical Arguments , 1990, Lecture Notes in Computer Science.
[86] William M. Farmer,et al. IMPS: An Interactive Mathematical Proof System , 1990, CADE.
[87] C. W. H. Lam. Opinion: How Reliable Is a Computer-Based Proof? , 1990 .
[88] Robert S. Boyer,et al. Computational Logic , 1990, ESPRIT Basic Research Series.
[89] V. Arnold. "Huygens and Barrow, Newton and Hooke": Pioneers in Mathematical Analysis and Catastrophe Theory from Evolvents to Quasicrystals , 1990 .
[90] Andre Scedrov,et al. Categories, allegories , 1990, North-Holland mathematical library.
[91] S. Bhogle,et al. LITTLEWOOD'S MISCELLANY , 1990 .
[92] Thomas Kropf,et al. Integrating A First-order Automatic prover In The HOL Environment , 1991, 1991., International Workshop on the HOL Theorem Proving System and Its Applications.
[93] Edmund M. Clarke,et al. Analytica - A Theorem Prover in Mathematica , 1992, CADE.
[94] A. R. D. Mathias,et al. The ignorance of bourbaki , 1992 .
[95] Richard Boulton,et al. Efficiency in a fully-expansive theorem prover , 1993 .
[96] John Harrison. A HOL Decision Procedure for Elementary Real Algebra , 1993, HUG.
[97] Manuel Blum,et al. Program Result Checking: A New Approach to Making Programs More Reliable , 1993, ICALP.
[98] Luca Viganò,et al. Building and Executing Proof Strategies in a Formal Metatheory , 1993, AI*IA.
[99] John Harrison,et al. Extending the HOL Theorem Prover with a Computer Algebra System to Reason about the Reals , 1993, HUG.
[100] Fred B. Schneider,et al. A Theory of Sets , 1993 .
[101] M. Gordon,et al. Introduction to HOL: a theorem proving environment for higher order logic , 1993 .
[102] Seán Matthews. A theory and its metatheory in FS 0 , 1994 .
[103] Rp Rob Nederpelt,et al. Volume 133 of Studies in Logic and the Foundations of Mathematics , 1994 .
[104] Robert Pollack,et al. On Extensibility of Proof Checkers , 1994, TYPES.
[105] John Harrison,et al. Constructing the real numbers in HOL , 1992, Formal Methods Syst. Des..
[106] Michael J. C. Gordon,et al. Merging HOL with Set Theory - preliminary experiments , 1994 .
[107] van Ls Bert Benthem Jutting,et al. Checking Landau's “Grundlagen” in the Automath System: Appendices 3 and 4 (The PN-lines; Excerpt for “Satz 27”) , 1994 .
[108] Robert S. Boyer,et al. The QED Manifesto , 1994, CADE.
[109] Lawrence C. Paulson,et al. A Concrete Final Coalgebra Theorem for ZF Set Theory , 1994, TYPES.
[110] Sten Agerholm,et al. Formalising a model of the λ-calculus in HOL-ST , 1994 .
[111] P. Naur. Proof versus formalization , 1994 .
[112] W. Marciszewski,et al. Mechanization Of Reasoning In A Historical Perspective. , 1995 .
[113] Donald MacKenzie,et al. The automation of proof: a historical and sociological exploration , 1995, IEEE Ann. Hist. Comput..
[114] Paul Curzon,et al. Tracking Design Changes with Formal Machine - Checked Proof , 1995, Comput. J..
[115] John Harrison. Binary Decision Diagrams as a HOL Derived Rule , 1995, Comput. J..
[116] Masami Hagiya,et al. Formalization of Planar Graphs , 1995, TPHOLs.
[117] Kurt Mehlhorn,et al. Checking geometric programs or verification of geometric structures , 1996, SCG '96.
[118] Rob Arthan. Undefinedness in Z: Issues for Specification and Proof , 1996 .
[119] Jim Grundy,et al. A Browsable Format for Proof Presentation , 1996 .
[120] R D Arthan. Undeenedness in Z: Issues for Speciication and Proof , 1996 .
[121] Krzysztof Grabczewski,et al. Mechanizing Set Theory: Cardinal Arithmetic and the Axiom of Choice , 2001, ArXiv.