Optical bandgap formation in AlInGaN alloys

We report on the spectral dynamics of the reflectivity, site-selectively excited photoluminescence, photoluminescence excitation, and time-resolved luminescence in quaternary AlInGaN epitaxial layers grown on GaN templates. The incorporation of a few percents of In into AlGaN causes significant smoothening of the band-bottom potential profile in AlInGaN layers owing to improved crystal quality. An abrupt optical bandgap indicates that a nearly lattice-matched AlInGaN/GaN heterostructure with large energy band offsets can be grown for high-efficiency light-emitting devices.