Entanglement versus Stosszahlansatz: disappearance of the thermodynamic arrow in a high-correlation environment.

The crucial role of ambient correlations in determining thermodynamic behavior is established. A class of entangled states of two macroscopic systems is constructed such that each component is in a state of thermal equilibrium at a given temperature, and when the two are allowed to interact heat can flow from the colder to the hotter system. A dilute gas model exhibiting this behavior is presented. This reversal of the thermodynamic arrow is a consequence of the entanglement between the two systems, a condition that is opposite to molecular chaos and shown to be unlikely in a low-entropy environment. By contrast, the second law is established by proving Clausius' inequality in a low-entropy environment. These general results strongly support the expectation, first expressed by Boltzmann and subsequently elaborated by others, that the second law is an emergent phenomenon which requires a low-entropy cosmological environment, one that can effectively function as an ideal information sink.