Adaptive memetic particle swarm optimization with variable local search pool size

We propose an adaptive Memetic Particle Swarm Optimization algorithm where local search is selected from a pool of different algorithms. The choice of local search is based on a probabilistic strategy that uses a simple metric to score the efficiency of local search. Our study investigates whether the pool size affects the memetic algorithm's performance, as well as the possible benefit of using the adaptive strategy against a baseline static one. For this purpose, we employed the memetic algorithms framework provided in the recent MEMPSODE optimization software, and tested the proposed algorithms on the Benchmarking Black Box Optimization (BBOB 2012) test suite. The obtained results lead to a series of useful conclusions.

[1]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[2]  Dimitris G. Papageorgiou,et al.  MERLIN-3.1.1. A new version of the Merlin optimization environment , 2004 .

[3]  Andries Petrus Engelbrecht,et al.  Fundamentals of Computational Swarm Intelligence , 2005 .

[4]  Anne Auger,et al.  Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009 , 2010, GECCO '10.

[5]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[6]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[7]  Michael N. Vrahatis,et al.  Parameter selection and adaptation in Unified Particle Swarm Optimization , 2007, Math. Comput. Model..

[8]  Andy J. Keane,et al.  Meta-Lamarckian learning in memetic algorithms , 2004, IEEE Transactions on Evolutionary Computation.

[9]  W. Hart Adaptive global optimization with local search , 1994 .

[10]  Wilfried Jakob,et al.  A general cost-benefit-based adaptation framework for multimeme algorithms , 2010, Memetic Comput..

[11]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[12]  Mauro Birattari,et al.  Swarm Intelligence , 2012, Lecture Notes in Computer Science.

[13]  Kevin Kok Wai Wong,et al.  Classification of adaptive memetic algorithms: a comparative study , 2006, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[14]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[15]  Konstantinos E. Parsopoulos,et al.  UPSO: A Unified Particle Swarm Optimization Scheme , 2019, International Conference of Computational Methods in Sciences and Engineering 2004 (ICCMSE 2004).

[16]  Michael N. Vrahatis,et al.  MEMPSODE: A global optimization software based on hybridization of population-based algorithms and local searches , 2012, Comput. Phys. Commun..

[17]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[18]  Michael N. Vrahatis,et al.  Memetic particle swarm optimization , 2007, Ann. Oper. Res..

[19]  Ioan Cristian Trelea,et al.  The particle swarm optimization algorithm: convergence analysis and parameter selection , 2003, Inf. Process. Lett..

[20]  Natalio Krasnogor,et al.  Studies on the theory and design space of memetic algorithms , 2002 .

[21]  Graham Kendall,et al.  A Hyperheuristic Approach to Scheduling a Sales Summit , 2000, PATAT.